Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    b3kat_BV050150429
    Umfang: 1 Online-Ressource (xii, 200 Seiten) , Illustrationen
    ISBN: 9783031805073
    Serie: Lecture notes in computer science 15444
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-80506-6
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-3-031-80508-0
    Sprache: Englisch
    Schlagwort(e): Informatik ; Syntax ; Struktur ; Statistik ; Mustererkennung ; Konferenzschrift
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    almahu_9949948813802882
    Umfang: XII, 200 p. 58 illus., 53 illus. in color. , online resource.
    Ausgabe: 1st ed. 2025.
    ISBN: 9783031805073
    Serie: Lecture Notes in Computer Science, 15444
    Inhalt: This book constitutes the proceedings of the Joint IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition, S+SSPR 2024, which took place in Venice, Italy, during September 9-11, 2024. The 19 full papers presented in this volume were carefully reviewed and selected from 27 submissions. The proceedings focus on pattern recognition, including classification and clustering, deep learning, structural matching and graph-theoretic methods, and multimedia analysis and understanding.
    Anmerkung: -- A Differentiable Approximation of the Graph Edit Distance. -- Learning Graph Similarity by Counting Holes in Simplicial Complexes. -- Community-Hop: Enhancing Node Classification through Community Preference. -- Spatio-Temporal Graph Neural Networks for Water Temperature Modeling. -- Enhancing IoT Network Security with Graph Neural Networks for Node Anomaly Detection. -- LSTM Networks and Graph Neural Networks for Predicting Events of Hypoglycemia. -- Evaluation metrics in Saliency Maps applied to Graph Regression. -- LESI-GNN: an Interpretable Graph Neural Network based on Local Structures Embedding. -- Mixture of Variational Graph Autoencoders. -- Multimodality Calibration in 3D Multi Input-Multi Output Network for Dementia Diagnosis with Incomplete Acquisitions. -- Multi-modal Medical Images Classification Using Meta-learning Algorithms. -- From semantic segmentation of natural images to medical image segmentation using ViT-based architectures. -- Chronic Wound Segmentation and Measurement Using Semi-Supervised Hierarchical Convolutional Neural Networks. -- ZIRACLE: Zero-shot composed Image Retrieval with Advanced Component-Level Emphasis. -- Improving Object Detector Performance on Low-Quality Images using Histogram Matching and Model Stacking. -- Comparing Learning Methods to Enhance Decision-Making in Simulated Curling. -- An empirical characterization of the stability of Isolation Forest results. -- Automated Classification of Android Games using Word Embeddings. -- An interesting property of Random Forest distances with respect to the curse of dimensionality.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9783031805066
    Weitere Ausg.: Printed edition: ISBN 9783031805080
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    almafu_9961812877802883
    Umfang: 1 online resource (XII, 200 p. 58 illus., 53 illus. in color.)
    Ausgabe: 1st ed. 2025.
    ISBN: 9783031805073 , 3031805070
    Serie: Lecture Notes in Computer Science, 15444
    Inhalt: This book constitutes the proceedings of the Joint IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition, S+SSPR 2024, which took place in Venice, Italy, during September 9-11, 2024. The 19 full papers presented in this volume were carefully reviewed and selected from 27 submissions. The proceedings focus on pattern recognition, including classification and clustering, deep learning, structural matching and graph-theoretic methods, and multimedia analysis and understanding.
    Anmerkung: -- A Differentiable Approximation of the Graph Edit Distance. -- Learning Graph Similarity by Counting Holes in Simplicial Complexes. -- Community-Hop: Enhancing Node Classification through Community Preference. -- Spatio-Temporal Graph Neural Networks for Water Temperature Modeling. -- Enhancing IoT Network Security with Graph Neural Networks for Node Anomaly Detection. -- LSTM Networks and Graph Neural Networks for Predicting Events of Hypoglycemia. -- Evaluation metrics in Saliency Maps applied to Graph Regression. -- LESI-GNN: an Interpretable Graph Neural Network based on Local Structures Embedding. -- Mixture of Variational Graph Autoencoders. -- Multimodality Calibration in 3D Multi Input-Multi Output Network for Dementia Diagnosis with Incomplete Acquisitions. -- Multi-modal Medical Images Classification Using Meta-learning Algorithms. -- From semantic segmentation of natural images to medical image segmentation using ViT-based architectures. -- Chronic Wound Segmentation and Measurement Using Semi-Supervised Hierarchical Convolutional Neural Networks. -- ZIRACLE: Zero-shot composed Image Retrieval with Advanced Component-Level Emphasis. -- Improving Object Detector Performance on Low-Quality Images using Histogram Matching and Model Stacking. -- Comparing Learning Methods to Enhance Decision-Making in Simulated Curling. -- An empirical characterization of the stability of Isolation Forest results. -- Automated Classification of Android Games using Word Embeddings. -- An interesting property of Random Forest distances with respect to the curse of dimensionality.
    Weitere Ausg.: ISBN 9783031805066
    Weitere Ausg.: ISBN 3031805062
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 3031803078?
Meinten Sie 3031805062?
Meinten Sie 3031804074?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz