Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
Fachgebiete(RVK)
Zugriff
  • 1
    UID:
    almahu_BV039557727
    Umfang: X, 222 S. : , graph. Darst.
    ISBN: 978-3-11-025030-5
    Serie: De Gruyter graduate lectures
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 978-3-11-025031-2
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Pseudodifferentialoperator ; Singulärer Integraloperator
    URL: Cover
    Mehr zum Autor: Abels, Helmut, 1975-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Berlin [u.a.] :De Gruyter,
    UID:
    almafu_BV042348143
    Umfang: 1 Online-Ressource (X, 222 S.) : , graph. Darst.
    ISBN: 978-3-11-025031-2
    Serie: De Gruyter Textbook
    Anmerkung: Description based upon print version of record. - Helmut Abels. - This textbook provides a self-contained and elementary introduction to the modern theory of pseudodifferential operators and their applications to partial differential equations. It presents the necessary material on Fourier transformation and distribution theory, the basic calculus of pseudodifferential operators on the n-dimensional Euclidean space, an introduction to the theory of singular integral operators, the modern theory of Besov and Bessel potential spaces, and several applications to wellposedness and regularity question for elliptic and parabolic equations. The basic notation of fu
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-3-11-025030-5
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Pseudodifferentialoperator ; Singulärer Integraloperator ; Electronic books
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Cover
    URL: Cover
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (lizenzpflichtig)
    URL: Cover
    URL: Cover
    URL: Cover
    Mehr zum Autor: Abels, Helmut 1975-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    [s.l.] : Walter de Gruyter GmbH Co.KG
    UID:
    almahu_9947359992502882
    Umfang: Online-Ressource , Online Ressource (222 S.)
    Ausgabe: 1. Aufl.
    ISBN: 3110250306
    Inhalt: Helmut Abels
    Inhalt: This textbook provides a self-contained and elementary introduction to the modern theory of pseudodifferential operators and their applications to partial differential equations. It presents the necessary material on Fourier transformation and distribution theory, the basic calculus of pseudodifferential operators on the n-dimensional Euclidean space, an introduction to the theory of singular integral operators, the modern theory of Besov and Bessel potential spaces, and several applications to wellposedness and regularity question for elliptic and parabolic equations. The basic notation of fu
    Anmerkung: Description based upon print version of record , 2.9.2 Exercises3 Basic Calculus of Pseudodifferential Operators on Rn; 3.1 Symbol Classes and Basic Properties; 3.2 Composition of Pseudodifferential Operators: Motivation; 3.3 Oscillatory Integrals; 3.4 Double Symbols; 3.5 Composition of Pseudodifferential Operators; 3.6 Application: Elliptic Pseudodifferential Operators and Parametrices; 3.7 Boundedness on Cb8 (Rn) and Uniqueness of the Symbol; 3.8 Adjoints of Pseudodifferential Operators and Operators in (x, y )-Form; 3.9 Boundedness on L2(Rn) and L2-Bessel Potential Spaces; 3.10 Outlook: Coordinate Transformations and PsDOs on Manifolds. , 3.11 Final Remarks and Exercises3.11.1 Further Reading; 3.11.2 Exercises; II Singular Integral Operators; 4 Translation Invariant Singular Integral Operators; 4.1 Motivation; 4.2 Main Result in the Translation Invariant Case; 4.3 Calderón-Zygmund Decomposition and the Maximal Operator; 4.4 Proof of the Main Result in the Translation Invariant Case; 4.5 Examples of Singular Integral Operators; 4.6 Mikhlin Multiplier Theorem; 4.7 Outlook: Hardy spaces and BMO; 4.8 Final Remarks and Exercises; 4.8.1 Further Reading; 4.8.2 Exercises; 5 Non-Translation Invariant Singular Integral Operators. , 5.1 Motivation5.2 Extension to Non-Translation Invariant and Vector-Valued Singular Integral Operators; 5.3 Hilbert-Space-Valued Mikhlin Multiplier Theorem; 5.4 Kernel Representation of a Pseudodifferential Operator; 5.5 Consequences of the Kernel Representation; 5.6 Final Remarks and Exercises; 5.6.1 Further Reading; 5.6.2 Exercises; III Applications to Function Space and Differential Equations; 6 Introduction to Besov and Bessel Potential Spaces; 6.1 Motivation; 6.2 A Fourier-Analytic Characterization of Holder Continuity. , 6.3 Bessel Potential and Besov Spaces - Definitions and Basic Properties6.4 Sobolev Embeddings; 6.5 Equivalent Norms; 6.6 Pseudodifferential Operators on Besov Spaces; 6.7 Final Remarks and Exercises; 6.7.1 Further Reading; 6.7.2 Exercises; 7 Applications to Elliptic and Parabolic Equations; 7.1 Applications of the Mikhlin Multiplier Theorem; 7.1.1 Resolvent of the Laplace Operator; 7.1.2 Spectrum of Multiplier Operators with Homogeneous Symbols; 7.1.3 Spectrum of a Constant Coefficient Differential Operator; 7.2 Applications of the Hilbert-Space-Valued Mikhlin Multiplier Theorem. , 7.2.1 Maximal Regularity of Abstract ODEs in Hilbert Spaces. , Preface; 1 Introduction; I Fourier Transformation and Pseudodifferential Operators; 2 Fourier Transformation and Tempered Distributions; 2.1 Definition and Basic Properties; 2.2 Rapidly Decreasing Functions - P (Rn); 2.3 Inverse Fourier Transformation and Plancherel's Theorem; 2.4 Tempered Distributions and Fourier Transformation; 2.5 Fourier Transformation and Convolution of Tempered Distributions; 2.6 Convolution on on P'(Rn) and Fundamental Solutions; 2.7 Sobolev and Bessel Potential Spaces; 2.8 Vector-Valued Fourier-Transformation; 2.9 Final Remarks and Exercises; 2.9.1 Further Reading.
    Weitere Ausg.: ISBN 3110250314
    Weitere Ausg.: ISBN 9783110250312
    Sprache: Englisch
    Schlagwort(e): Electronic books
    URL: Cover
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    UID:
    gbv_1655717111
    Umfang: 1 Online-Ressource (X, 222 Seiten) , Diagramme
    ISBN: 9783110250312 , 3110250314 , 3110250306
    Serie: De Gruyter Textbook
    Inhalt: Helmut Abels
    Inhalt: This textbook provides a self-contained and elementary introduction to the modern theory of pseudodifferential operators and their applications to partial differential equations. It presents the necessary material on Fourier transformation and distribution theory, the basic calculus of pseudodifferential operators on the n-dimensional Euclidean space, an introduction to the theory of singular integral operators, the modern theory of Besov and Bessel potential spaces, and several applications to wellposedness and regularity question for elliptic and parabolic equations. The basic notation of fu
    Anmerkung: Description based upon print version of record , Preface; 1 Introduction; I Fourier Transformation and Pseudodifferential Operators; 2 Fourier Transformation and Tempered Distributions; 2.1 Definition and Basic Properties; 2.2 Rapidly Decreasing Functions - P (Rn); 2.3 Inverse Fourier Transformation and Plancherel's Theorem; 2.4 Tempered Distributions and Fourier Transformation; 2.5 Fourier Transformation and Convolution of Tempered Distributions; 2.6 Convolution on on P'(Rn) and Fundamental Solutions; 2.7 Sobolev and Bessel Potential Spaces; 2.8 Vector-Valued Fourier-Transformation; 2.9 Final Remarks and Exercises; 2.9.1 Further Reading , 2.9.2 Exercises3 Basic Calculus of Pseudodifferential Operators on Rn; 3.1 Symbol Classes and Basic Properties; 3.2 Composition of Pseudodifferential Operators: Motivation; 3.3 Oscillatory Integrals; 3.4 Double Symbols; 3.5 Composition of Pseudodifferential Operators; 3.6 Application: Elliptic Pseudodifferential Operators and Parametrices; 3.7 Boundedness on Cb8 (Rn) and Uniqueness of the Symbol; 3.8 Adjoints of Pseudodifferential Operators and Operators in (x, y )-Form; 3.9 Boundedness on L2(Rn) and L2-Bessel Potential Spaces; 3.10 Outlook: Coordinate Transformations and PsDOs on Manifolds , 3.11 Final Remarks and Exercises3.11.1 Further Reading; 3.11.2 Exercises; II Singular Integral Operators; 4 Translation Invariant Singular Integral Operators; 4.1 Motivation; 4.2 Main Result in the Translation Invariant Case; 4.3 Calderón-Zygmund Decomposition and the Maximal Operator; 4.4 Proof of the Main Result in the Translation Invariant Case; 4.5 Examples of Singular Integral Operators; 4.6 Mikhlin Multiplier Theorem; 4.7 Outlook: Hardy spaces and BMO; 4.8 Final Remarks and Exercises; 4.8.1 Further Reading; 4.8.2 Exercises; 5 Non-Translation Invariant Singular Integral Operators , 5.1 Motivation5.2 Extension to Non-Translation Invariant and Vector-Valued Singular Integral Operators; 5.3 Hilbert-Space-Valued Mikhlin Multiplier Theorem; 5.4 Kernel Representation of a Pseudodifferential Operator; 5.5 Consequences of the Kernel Representation; 5.6 Final Remarks and Exercises; 5.6.1 Further Reading; 5.6.2 Exercises; III Applications to Function Space and Differential Equations; 6 Introduction to Besov and Bessel Potential Spaces; 6.1 Motivation; 6.2 A Fourier-Analytic Characterization of Holder Continuity , 6.3 Bessel Potential and Besov Spaces - Definitions and Basic Properties6.4 Sobolev Embeddings; 6.5 Equivalent Norms; 6.6 Pseudodifferential Operators on Besov Spaces; 6.7 Final Remarks and Exercises; 6.7.1 Further Reading; 6.7.2 Exercises; 7 Applications to Elliptic and Parabolic Equations; 7.1 Applications of the Mikhlin Multiplier Theorem; 7.1.1 Resolvent of the Laplace Operator; 7.1.2 Spectrum of Multiplier Operators with Homogeneous Symbols; 7.1.3 Spectrum of a Constant Coefficient Differential Operator; 7.2 Applications of the Hilbert-Space-Valued Mikhlin Multiplier Theorem , 7.2.1 Maximal Regularity of Abstract ODEs in Hilbert Spaces , In English
    Weitere Ausg.: ISBN 9783110250305
    Weitere Ausg.: ISBN 3110250306
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe Abels, Helmut, 1975 - Pseudodifferential and singular integral operators Berlin [u.a.] : De Gruyter, 2012 ISBN 9783110250305
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Pseudodifferentialoperator ; Singulärer Integraloperator ; Pseudodifferentialoperator ; Singulärer Integraloperator ; Electronic books
    URL: Volltext  (lizenzpflichtig)
    URL: Cover
    URL: Cover
    URL: Cover
    Mehr zum Autor: Abels, Helmut 1975-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    UID:
    almahu_9948314987202882
    Umfang: x, 222 p.
    Ausgabe: Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
    Serie: De Gruyter graduate lectures
    Anmerkung: pt. 1. Fourier transformation and pseudodifferential operators -- pt. 2. Singular integral operators -- pt. 3. Applications to function space and differential equations -- pt. 4. Appendix.
    Sprache: Englisch
    Schlagwort(e): Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 3110250357?
Meinten Sie 3110250365?
Meinten Sie 3110200317?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz