Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Buch
    Buch
    Berlin u.a. :Springer,
    UID:
    almafu_BV002649716
    Umfang: XII, 459 S. : Ill., graph. Darst.
    ISBN: 3-540-51253-5 , 0-387-51253-5
    Serie: Springer series in information sciences 20
    Anmerkung: Literaturverz. S. [436] - 447
    Sprache: Englisch
    Fachgebiete: Informatik
    RVK:
    Schlagwort(e): Visuelle Wahrnehmung ; Mathematik ; Mustererkennung ; Gruppentheorie ; Bildverarbeitung ; Gruppentheorie ; Computervision ; Gruppentheorie ; Bildanalyse ; Gruppentheorie ; Bildverstehen ; Gruppentheorie ; Digitaltechnik ; Mathematische Methode ; Computergrafik
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Buch
    Buch
    Berlin : Springer
    UID:
    gbv_018202608
    Umfang: XII, 459 S. , Ill., graph. Darst.
    ISBN: 0387512535 , 3540512535
    Serie: Springer series in information sciences 20
    Anmerkung: Literaturverz. S. 436 - 447
    Sprache: Englisch
    Fachgebiete: Informatik
    RVK:
    Schlagwort(e): Bildverstehen ; Gruppentheorie
    URL: Cover
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Berlin, Heidelberg :Springer Berlin Heidelberg :
    UID:
    almahu_9949199266102882
    Umfang: XII, 459 p. , online resource.
    Ausgabe: 1st ed. 1990.
    ISBN: 9783642612756
    Serie: Springer Series in Information Sciences ; 20
    Inhalt: Image understanding is an attempt to extract knowledge about a 3D scene from 20 images. The recent development of computers has made it possible to automate a wide range of systems and operations, not only in the industry, military, and special environments (space, sea, atomic plants, etc.), but also in daily life. As we now try to build ever more intelligent systems, the need for "visual" control has been strongly recognized, and the interest in image under­ standing has grown rapidly. Already, there exists a vast body of literature-ranging from general philosophical discourses to processing techniques. Compared with other works, however, this book may be unique in that its central focus is on "mathematical" principles-Lie groups and group representation theory, in particular. In the study of the relationship between the 3D scene and the 20 image, "geometry" naturally plays a central role. Today, so many branches are inter­ woven in geometry that we cannot truly regard it as a single subject. Neverthe­ less, as Felix Klein declared in his Erlangen Program, the central principle of geometry is group theory, because geometrical concepts are abstractions of properties that are "invariant" with respect to some group of transformations. In this text, we specifically focus on two groups of transformations. One is 20 rotations of the image coordinate system around the image origin. Such coordi­ nate rotations are indeed irrelevant when we look for intrinsic image properties.
    Anmerkung: 1. Introduction -- 1.1 What is Image Understanding? -- 1.2 Imaging Geometry of Perspective Projection -- 1.3 Geometry of Camera Rotation -- 1.4 The 3D Euclidean Approach -- 1.5 The 2D Non-Euclidean Approach -- 1.6 Organization of This Book -- 2. Coordinate Rotation Invariance of Image Characteristics -- 2.1 Image Characteristics and 3D Recovery Equations -- 2.2 Parameter Changes and Representations -- 2.3 Invariants and Weights -- 2.4 Representation of a Scalar and a Vector -- 2.5 Representation of a Tensor -- 2.6 Analysis of Optical Flow for a Planar Surface -- 2.7 Shape from Texture for Curved Surfaces -- Exercises -- 3. 3D Rotation and Its Irreducible Representations -- 3.1 Invariance for the Camera Rotation Transformation -- 3.2 Infinitesimal Generators and Lie Algebra -- 3.3 Lie Algebra and Casimir Operator of the 3D Rotation Group -- 3.4 Representation of a Scalar and a Vector -- 3.5 Irreducible Reduction of a Tensor -- 3.6 Restriction of SO(3) to SO(2) -- 3.7 Transformation of Optical Flow -- Exercises -- 4. Algebraic Invariance of Image Characteristics -- 4.1 Algebraic Invariants and Irreducibility -- 4.2 Scalars, Points, and Lines -- 4.3 Irreducible Decomposition of a Vector -- 4.4 Irreducible Decomposition of a Tensor -- 4.5 Invariants of Vectors -- 4.6 Invariants of Points and Lines -- 4.7 Invariants of Tensors -- 4.8 Reconstruction of Camera Rotation -- Exercises -- 5. Characterization of Scenes and Images -- 5.1 Parametrization of Scenes and Images -- 5.2 Scenes, Images, and the Projection Operator -- 5.3 Invariant Subspaces of the Scene Space -- 5.4 Spherical Harmonics -- 5.5 Tensor Expressions of Spherical Harmonics -- 5.6 Irreducibility of Spherical Harmonics -- 5.7 Camera Rotation Transformation of the Image Space -- 5.8 Invariant Measure -- 5.9 Transformation of Features -- 5.10 Invariant Characterization of a Shape -- Exercises -- 6. Representation of 3D Rotations -- 6.1 Representation of Object Orientations -- 6.2 Rotation Matrix -- 6.3 Rotation Axis and Rotation Angle -- 6.4 Euler Angles -- 6.5 Cayley-Klein Parameters -- 6.6 Representation of SO(3) by SU(2) -- 6.7 Adjoint Representation of SU(2) -- 6.8 Quaternions -- 6.9 Topology of SO(3) -- 6.10 Invariant Measure of 3D Rotations -- Exercises -- 7. Shape from Motion -- 7.1 3D Recovery from Optical Flow for a Planar Surface -- 7.2 Flow Parameters and 3D Recovery Equations -- 7.3 Invariants of Optical Flow -- 7.4 Analytical Solution of the 3D Recovery Equations -- 7.5 Pseudo-orthographic Approximation -- 7.6 Adjacency Condition of Optical Flow -- 7.7 3D Recovery of a Polyhedron -- 7.8 Motion Detection Without Correspondence -- Exercises -- 8. Shape from Angle -- 8.1 Rectangularity Hypothesis -- 8.2 Spatial Orientation of a Rectangular Corner -- 8.3 Interpretation of a Rectangular Polyhedron -- 8.4 Standard Transformation of Corner Images -- 8.5 Vanishing Points and Vanishing Lines -- Exercises -- 9. Shape from Texture -- 9.1 Shape from Texture from Homogeneity -- 9.2 Texture Density and Homogeneity -- 9.3 Perspective Projection and the First Fundamental Form -- 9.4 Surface Shape Recovery from Texture -- 9.5 Recovery of Planar Surfaces -- 9.6 Numerical Scheme of Planar Surface Recovery -- Exercises -- 10. Shape from Surface -- 10.1 What Does 3D Shape Recovery Mean? -- 10.2 Constraints on a $$2\frac{1} {2}\text{D}$$ Sketch -- 10.3 Optimization of a $$2\frac{1}{2}\text{D}$$ Sketch -- 10.4 Optimization for Shape from Motion -- 10.5 Optimization of Rectangularity Heuristics -- 10.6 Optimization of Parallelism Heuristics -- Exercises -- Appendix. Fundamentals of Group Theory -- A.1 Sets, Mappings, and Transformations -- A.2 Groups -- A.3 Linear Spaces -- A.4 Metric Spaces -- A.5 Linear Operators -- A.6 Group Representation -- A.7 Schur's Lemma -- A.8 Topology, Manifolds, and Lie Groups -- A.9 Lie Algebras and Lie Groups -- A.10 Spherical Harmonics.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9783642647727
    Weitere Ausg.: Printed edition: ISBN 9783540512530
    Weitere Ausg.: Printed edition: ISBN 9783642612763
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 3540402535?
Meinten Sie 3540312536?
Meinten Sie 3540182535?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz