Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
  • 1
    UID:
    almahu_9949983138902882
    Format: 1 online resource (418 pages)
    ISBN: 9780323995740
    Content: Hydrometallurgy: Practice provides the necessary fundamental background to the multidisciplinary field of hydrometallurgy and provides the tools to be able to utilize the theory to quantitatively describe, model and control the unit operations used in hydrometallurgical plants. The book describes the development and operation of processes utilizing hydrometallurgical operations. It is a valuable resource and reference for researchers, academics, students and industry professionals. The book focuses on quantitative problem solving with many worked examples and focused problems based on Nicol’s many years’ experience in the teaching of hydrometallurgy to students, researchers and industry professionals.
    Note: Front Cover -- HYDROMETALLURGY -- HYDROMETALLURGY: Practice -- Copyright -- Contents -- 1 - Leaching practice -- 1.1 Leaching methods -- 1.2 Typical leaching processes -- 1.3 Batch leaching kinetics -- 1.4 Continuous leaching-micro- and macrofluids -- 1.4.1 Residence time distribution in a CSTR -- 1.5 Counter-current leaching -- 1.6 Bacterial oxidation and leaching -- 1.6.1 Process parameters for biological oxidation -- 1.6.2 Biooxidation reactor kinetics and design -- 1.7 Pressure leaching -- 1.8 Heap leaching -- 1.8.1 Copper -- 1.8.2 Gold -- 1.8.3 Other metals -- 1.9 In situ leaching -- 1.10 Leaching of gold and silver -- 1.10.1 Gold cyanidation -- 1.10.2 Cyanide in gold leaching -- 1.10.3 Oxygen in gold leaching -- 1.10.3.1 Temperature -- 1.10.3.2 Salinity -- 1.10.3.3 Sparging efficiency -- 1.10.3.4 The use of air, oxygen, or peroxide -- 1.10.4 Agitation in gold leaching -- 1.10.5 Reactions of cyanide in CIP/CIL circuits -- 1.10.5.1 Cyanide species relevant to gold leaching -- 1.10.5.2 Copper -- 1.10.5.3 Iron -- 1.10.5.4 Zinc -- 1.10.5.5 Other reactions -- 1.11 Alternative lixiviants for gold -- 1.11.1 Stability of gold complexes-reduction potentials -- 1.12 Summary -- Problems-leaching -- Case study -- Appendix -- Continuous leaching -- Example -- No segregation -- Segregation -- CSTRs in series -- Graphical method for reactors in series -- Example -- References -- Further reading -- 2 - Solid-liquid separation -- 2.1 Introduction -- 2.2 Sedimentation -- 2.2.1 Settling velocity of a single particle -- Example 1 -- Example 2 -- 2.2.2 Settling of slurries -- Example 3 -- 2.3 Thickeners -- 2.3.1 Dewatering thickeners -- 2.3.2 Thickener area calculations -- Example 4 -- 2.3.3 Wash thickeners -- 2.3.4 Countercurrent washing calculations -- Example 5 -- 2.4 Filtration -- 2.4.1 Filtration theory -- 2.4.2 Constant pressure filtration -- Example 6. , 2.5 Summary -- Further reading -- 2 . Case study -- 3 - Precipitation and crystallization -- 3.1 Introduction -- 3.2 Thermodynamics of precipitation -- 3.2.1 Metal hydroxides and oxides -- 3.2.2 Metal sulfides -- 3.2.3 Other metal precipitates -- 3.2.3.1 Gypsum -- 3.2.3.2 Alkali chlorides-lithium carbonate -- 3.2.3.3 Arsenic precipitates -- 3.2.3.4 Alunites and jarosites -- 3.3 Iron removal from zinc sulfate solutions -- 3.3.1 Jarosite process -- 3.3.2 Goethite process -- 3.3.2.1 Reduction of ferric to ferrous -- 3.3.2.2 Dilution-the paragoethite process -- 3.3.3 Hematite process -- 3.4 Kinetics of precipitation -- 3.4.1 Nucleation -- 3.4.2 Crystal growth -- 3.5 Dissolution-precipitation processes -- 3.6 Summary -- References -- 3 . Problems -- 3 . Case study -- 4 - Solvent extraction -- 4.1 A typical SX process -- 4.2 Chemistry of SX processes -- 4.2.1 Extractable species and extractants -- 4.2.2 Extraction equilibria -- 4.2.3 Extractants -- 4.2.3.1 Organic acids -- 4.2.3.2 Chelating extractants -- 4.2.3.3 Solvating extractants -- 4.2.3.4 Ion-pair extractants -- 4.2.3.5 Quaternary amines -- 4.2.3.6 Tertiary amines -- 4.2.4 Applications of mixed extractants -- 4.2.5 Mechanism of solvent extraction reactions -- 4.3 Extraction methods -- 4.3.1 Single batch extraction -- 4.3.2 Cross current extraction -- 4.3.3 Counter-current extraction -- 4.3.3.1 Comparison of methods -- 4.3.3.2 Scrubbing -- 4.4 Common SX contactors -- 4.4.1 Mixer-settler contactors -- 4.4.2 Mixer characteristics -- 4.2.1 Establish continuous phase -- 4.2.2 Maximize mass transfer between phases -- 4.2.3 Entrainment of fine droplets -- 4.4.3 Settler characteristics -- 4.4.4 Column contactors -- 4.4.5 Factors affecting selection of extractors -- 4.5 Some SX processes -- 4.5.1 Copper heap leach -- 4.5.2 Recovery of uranium -- 4.5.3 Recovery and separation of nickel and cobalt. , 4.5.3.1 Pressure acid leach process -- 4.5.3.2 Matte leaching process -- 4.5.4 Concentration and purification of zinc -- 4.5.5 Purification of lithium and recovery of boron -- 4.6 Summary -- Problems -- Case study -- References -- Further reading -- 5 - Adsorption and ion exchange -- 5.1 Ion-exchange resins -- 5.1.1 Synthesis of ion-exchange resins -- 5.1.2 Physical and chemical structure of resins -- 5.1.3 Selectivity of resins -- 5.2 Speciality resins and adsorbents -- 5.2.1 Imino-diacetate chelating resin -- 5.2.2 Amidoxime and aminophosphonic resins -- 5.2.3 Diphonix resin -- 5.2.4 Molecular recognition technology resins -- 5.2.5 Solvating absorbents -- 5.3 Ion-exchange equilibria -- 5.3.1 Exchange of multivalent ions -- 5.4 Ion-exchange kinetics -- 5.4.1 Rate-limiting steps -- 5.4.2 Batch extraction -- 5.4.2.1 Liquid film diffusion controlled -- 5.4.2.2 Particle (or resin) diffusion controlled -- 5.4.2.3 Equilibrium -- 5.4.3 Column operation -- 5.5 Ion-exchange processes and equipment -- 5.5.1 Fixed bed columns -- 5.5.2 Multistage semicontinuous contactors -- 5.5.3 Resin-in-pulp contactors -- 5.6 Process examples -- 5.6.1 Extraction of uranium -- 5.6.2 Control of iron in copper SX/EW plants -- 5.7 Quantitative description of fixed-bed processes -- 5.7.1 Specifying resin quantities and flow rates -- 5.7.1.1 Resin quantities -- 5.7.1.2 Flow rates -- 5.8 Mass transport parameters -- 5.8.1 Film diffusion -- 5.8.2 Particle diffusion -- 5.8.3 Axial dispersion in ion exchange columns -- 5.8.3.1 Example -- 5.9 Modeling of breakthrough -- 5.9.1 Rate determining mass transport in liquid phase -- 5.9.2 Rate-determining mass transport in resin phase -- 5.9.3 Thomas model -- 5.10 The resin (carbon)-in-pulp process -- 5.10.1 Activated carbon -- 5.10.2 Models for the adsorption process -- 5.10.3 Batch absorption -- 5.10.4 Continuous adsorption. , 5.10.5 Single stage adsorption -- 5.10.5.1 Example -- 5.10.5.1.1 Note -- 5.10.6 Multistage counter-current absorption -- 5.10.7 Example -- 5.10.7.1 Solution -- 5.10.8 Extension to resin-in-leach processes -- 5.10.9 Elution of gold -- 5.10.9.1 Chemical basis for elution methods -- 5.10.9.1.1 Temperature -- 5.10.9.1.2 Ionic strength -- 5.10.9.1.3 Cyanide concentration -- 5.10.9.1.4 Organic solvents -- 5.10.10 Some other aspects of the elution process -- 5.10.10.1 Decomposition of cyanide -- 5.10.10.2 Selective elution of copper -- 5.10.11 Reactivation of carbon -- 5.11 Summary -- Problems -- Case study -- Introduction -- Equilibria -- Interpretation -- Activities -- Kinetics -- Breakthrough data -- Appendix 1 -- Selectivity coefficients of various cations on cation exchange resins of different crosslinking -- Selectivity coefficients of various anions on styrene-divinylbenzene anion exchange resins -- Appendix 2 -- Extension to the loading of multiple metal ions -- Equilibria -- Mass balances -- Appendix 3 -- Simple modeling of breakthrough curves for columns -- Appendix 4 -- Kinetic models for adsorption in columns -- References -- Literature -- 6 - Cementation and reduction -- 6.1 Cementation -- 6.1.1 Thermodynamics -- 6.1.2 Kinetics -- 6.1.3 Zinc electrolyte purification -- 6.1.4 Gold recovery-the Merrill-Crowe process -- 6.2 Reduction by dissolved gas -- 6.2.1 Thermodynamics -- 6.2.2 Kinetics -- 6.2.3 Sherritt-Gordon process -- 6.3 Summary -- Problems -- Reference -- 7 - Electrowinning and electrorefining of metals -- 7.1 General considerations -- 7.2 Mass transfer at vertical electrodes -- 7.2.1 Natural convection -- 7.2.2 Application to copper deposition -- 7.2.3 Effect of gas evolution -- 7.3 Electrocrystallization -- 7.3.1 Influence of kinetics on deposit morphology -- 7.3.1.1 Charge transfer -- 7.3.1.2 Crystallization. , 7.3.1.3 Lateral versus outward growth -- 7.3.2 Application to metal deposits -- 7.3.3 Additives in metal deposition -- 7.3.4 Underpotential deposition -- 7.4 Current distribution in cells -- 7.4.1 Primary current distribution -- 7.4.2 Secondary current distribution -- 7.4.3 Tertiary current distribution -- 7.4.4 Current distribution in three-dimensional electrodes -- 7.5 Materials for cells and electrodes -- 7.5.1 Anodes and cathodes -- 7.5.2 Anodes for electrowinning -- 7.5.3 Cell design -- 7.5.4 Control of acid mist -- 7.6 Tankhouse current distribution -- 7.7 Energy consumption -- 7.7.1 Voltage components -- 7.7.2 Current components -- 7.8 Electrorefining of metals -- 7.8.1 Copper electrorefining -- 7.8.2 Electrorefining of lead -- 7.8.3 Electrorefining of gold and silver -- 7.8.3.1 Gold -- 7.8.3.2 Silver -- 7.9 Electrowinning of copper -- 7.9.1 Competing reactions -- 7.9.2 Quality of copper cathodes -- 7.10 Electrowinning of zinc -- 7.10.1 General aspects -- 7.10.2 Current efficiency -- 7.10.3 Cathode purity -- 7.10.4 Effect of fluoride ions -- 7.11 Electrowinning of nickel and cobalt -- 7.11.1 Nickel -- 7.11.2 Cobalt -- 7.11.2.1 Electrowinning from chloride solutions -- 7.12 Electrowinning of manganese metal and dioxide -- 7.12.1 The overall process -- 7.12.2 Electrowinning of EMD -- 7.12.3 Electrowinning of manganese metal -- 7.13 Electrowinning in novel cells -- 7.13.1 Three-dimensional cathodes -- 7.13.2 Types of 3D cathodes -- 7.13.2.1 Porous substrates -- 7.13.2.2 Screens or grids -- 7.13.2.3 Particulate electrodes -- 7.13.3 Design considerations -- 7.13.3.1 Flow arrangement -- 7.13.3.2 Modes of operation -- 7.13.3.2.1 Electrolyte flow -- 7.13.3.2.2 Current flow -- 7.13.3.3 Cathode material and current feeders -- 7.13.3.4 Diaphragms and membranes -- 7.13.4 Modeling electrowinning systems containing 3D electrodes. , 7.13.4.1 Packed bed model-single pass through reactor.
    Additional Edition: Print version: Nicol, Michael Hydrometallurgy San Diego : Elsevier,c2022 ISBN 9780323992145
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages