Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Gistrup, Denmark :River Publishers,
    UID:
    almahu_9949378080502882
    Format: 1 online resource (436 pages).
    Edition: 1st ed.
    ISBN: 1-000-79254-4 , 1-00-333812-7 , 1-003-33812-7 , 1-000-79586-1 , 1-5231-3905-6 , 87-7022-015-8
    Series Statement: River Publishers series in software engineering
    Content: To be effective, data-intensive systems require extensive ongoing customisation to reflect changing user requirements, organisational policies, and the structure and interpretation of the data they hold. Manual customisation is expensive, time-consuming, and error-prone. In large complex systems, the value of the data can be such that exhaustive testing is necessary before any new feature can be added to the existing design. In most cases, the precise details of requirements, policies and data will change during the lifetime of the system, forcing a choice between expensive modification and continued operation with an inefficient design.Engineering Agile Big-Data Systems outlines an approach to dealing with these problems in software and data engineering, describing a methodology for aligning these processes throughout product lifecycles. It discusses tools which can be used to achieve these goals, and, in a number of case studies, shows how the tools and methodology have been used to improve a variety of academic and business systems.
    Note: Front Cover -- Half Title Page -- RIVER PUBLISHERS SERIES IN SOFTWARE ENGINEERING -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgements -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- Chapter 1 - Introduction -- 1.1 State of the Art in Engineering Data-Intensive Systems -- 1.1.1 The Challenge -- 1.2 State of the Art in Semantics-Driven Software Engineering -- 1.2.1 The Challenge -- 1.3 State of the Art in Data Quality Engineering -- 1.3.1 The Challenge -- 1.4 About ALIGNED -- 1.5 ALIGNED Partners -- 1.5.1 Trinity College Dublin -- 1.5.2 Oxford University - Department of Computer Science -- 1.5.3 Oxford University - School of Anthropology and Museum Ethnography -- 1.5.4 University of Leipzig - Agile Knowledge Engineering and Semantic Web (AKSW) -- 1.5.5 Semantic Web Company -- 1.5.6 Wolters Kluwer Germany -- 1.5.7 Adam Mickiewicz University in Pozna´n -- 1.5.8 Wolters Kluwer Poland -- 1.6 Structure -- Chapter 2 - ALIGNED Use Cases - Data and SoftwareEngineering Challenges -- 2.1 Introduction -- 2.2 The ALIGNED Use Cases -- 2.2.1 Seshat: Global History Databank -- 2.2.2 PoolParty Enterprise Application Demonstrator System -- 2.2.3 DBpedia -- 2.2.4 Jurion and Jurion IPG -- 2.2.5 Health Data Management -- 2.3 The ALIGNED Use Cases and Data Life Cycle. Major Challenges and Offered Solutions -- 2.4 The ALIGNED Use Cases and Software Life Cycle. Major Challenges and Offered Solutions -- 2.5 Conclusions -- Chapter 3 - Methodology -- 3.1 Introduction -- 3.2 Software and Data Engineering Life Cycles -- 3.2.1 Software Engineering Life Cycle -- 3.2.2 Data Engineering Life Cycle -- 3.3 Software Development Processes -- 3.3.1 Model-Driven Approaches -- 3.3.2 Formal Techniques -- 3.3.3 Test-Driven Development -- 3.4 Integration Points and Harmonisation -- 3.4.1 Integration Points. , 3.4.2 Barriers to Harmonisation -- 3.4.3 Methodology Requirements -- 3.5 An ALIGNED Methodology -- 3.5.1 A General Framework for Process Management -- 3.5.2 An Iterative Methodology and Illustration -- 3.6 Recommendations -- 3.6.1 Sample Methodology -- 3.7 Sample Synchronisation Point Activities -- 3.7.1 Model Catalogue: Analysis and Search/Browse/Explore -- 3.7.2 Model Catalogue: Design and Classify/Enrich -- 3.7.3 Semantic Booster: Implementation and Store/Query -- 3.7.4 Semantic Booster: Maintenance and Search/Browse/Explore -- 3.8 Summary -- 3.8.1 Related Work -- 3.9 Conclusions -- Chapter 4 - ALIGNED MetaModel Overview -- 4.1 Generic Metamodel -- 4.1.1 Basic Approach -- 4.1.2 Namespaces and URIs -- 4.1.3 Expressivity of Vocabularies -- 4.1.4 Reference Style for External Terms -- 4.1.5 Links with W3C PROV -- 4.2 ALIGNED Generic Metamodel -- 4.2.1 Design Intent Ontology (DIO) -- 4.3 Software Engineering -- 4.3.1 Software Life Cycle Ontology -- 4.3.2 Software Implementation Process Ontology (SIP) -- 4.4 Data Engineering -- 4.4.1 Data Life Cycle Ontology -- 4.5 DBpedia DataID (DataID) -- 4.6 Unified Quality Reports -- 4.6.1 Reasoning Violation Ontology (RVO) Overview -- 4.6.2 W3C SHACL Reporting Vocabulary -- 4.6.3 Data Quality Vocabulary -- 4.6.4 Test-Driven RDF Validation Ontology (RUT) -- 4.6.5 Enterprise Software Development (DIOPP) -- 4.6.6 Unified Governance Domain Ontologies -- 4.6.7 Semantic Booster and Model Catalogue Domain Ontology -- 4.6.7.1 Model catalogue -- 4.6.7.2 Booster -- 4.6.8 PROV16 -- 4.6.9 SKOS17 -- 4.6.10 OWL18 -- 4.6.11 RDFS19 -- 4.6.12 RDF20 -- Chapter 5 - Tools -- 5.1 Model Catalogue -- 5.1.1 Introduction -- 5.1.2 Model Catalogue -- 5.1.2.1 Architecture -- 5.1.2.2 Searching and browsing the catalogue -- 5.1.2.3 Editing the catalogue contents -- 5.1.2.4 Administration. , 5.1.2.5 Eclipse integration and model-driven development -- 5.1.2.6 Semantic reasoning -- 5.1.2.7 Automation and search -- 5.1.3 Semantic Booster -- 5.1.3.1 Introduction -- 5.1.3.2 Semantic Booster -- 5.2 RDFUnit -- 5.2.1 RDFUnit Integration -- 5.2.1.1 JUnit XML report-based integration -- 5.2.1.2 Custom apache maven-based integration -- 5.2.1.3 The shapes constraint language (SHACL) -- 5.2.1.4 Comparison of SHACL to schema definition usingRDFUnit test patterns -- 5.2.1.5 Comparison of SHACL to auto-generated RDFUnit testsfrom RDFS/OWL axioms -- 5.2.1.6 Progress on the SHACL specification andstandardisation process -- 5.2.1.7 SHACL support in RDFUnit -- 5.3 Expert Curation Tools and Workflows -- 5.3.1 Requirements -- 5.3.1.1 Graduated application of semantics -- 5.3.1.2 Graph - object mapping -- 5.3.1.3 Object/document level state management and versioning -- 5.3.1.4 Object-based workflow interfaces -- 5.3.1.5 Integrated, automated, constraint validation -- 5.3.1.6 Result interpretation -- 5.3.1.7 Deferred updates -- 5.3.2 Workflow/Process Models -- 5.3.2.1 Process model 1 - linked data object creation -- 5.3.2.2 Process model 2 object - linked data object updates -- 5.3.2.3 Process model 3 - updates to deferred updates -- 5.3.2.4 Process model 4 - schema updates -- 5.3.2.5 Process model 5 - validating schema updates -- 5.3.2.6 Process model 6 - named graph creation -- 5.3.2.7 Process model 7 - instance data updates and named graphs -- 5.4 Dacura Approval Queue Manager -- 5.5 Dacura Linked Data Object Viewer -- 5.5.1 CSP Design of Seshat Workflow Use Case -- 5.5.2 Specification -- 5.6 Dacura Quality Service -- 5.6.1 Technical Overview of Dacura Quality Service -- 5.6.2 Dacura Quality Service API -- 5.6.2.1 Resource and interchange format -- 5.6.2.2 URI -- 5.6.2.3 Literals -- 5.6.2.4 Literal types -- 5.6.2.5 Quads -- 5.6.2.6 POST variables. , 5.6.2.7 Tests -- 5.6.2.8 Required schema tests -- 5.6.2.9 Schema tests -- 5.6.2.10 Errors -- 5.6.2.11 Endpoints -- 5.7 Linked Data Model Mapping -- 5.7.1 Interlink Validation Tool -- 5.7.1.1 Interlink validation -- 5.7.1.2 Technical overview -- 5.7.1.3 Configuration via iv config.txt -- 5.7.1.4 Configuration via external datasets.txt -- 5.7.1.5 Execute the interlink validator tool -- 5.7.2 Dacura Linked Model Mapper -- 5.7.3 Model Mapper Service -- 5.7.3.1 Modelling tool - creating mappings -- 5.7.3.2 Importing semi-structured data with data harvesting tool -- 5.8 Model-Driven Data Curation -- 5.8.1 Dacura Quality Service Frame Generation -- 5.8.2 Frames for UserInterface Design -- 5.8.3 SemiFormal Frame Specification -- 5.8.4 Frame API Endpoints -- Chapter 6 - Use Cases -- 6.1 Wolters Kluwer - Re-Engineering a Complex Relationa lDatabase Application -- 6.1.1 Introduction -- 6.1.2 Problem Statement -- 6.1.3 Actors -- 6.1.4 Implementation -- 6.1.4.1 PoolParty notification extension -- 6.1.4.2 rsine notification extension -- 6.1.4.2.1 Results -- 6.1.4.3 RDFUnit for data transformation -- 6.1.4.4 PoolParty external link validity -- 6.1.4.5 Statistical overview -- 6.1.5 Evaluation -- 6.1.5.1 Productivity -- 6.1.5.2 Quality -- 6.1.5.3 Agility -- 6.1.5.4 Measuring overall value -- 6.1.5.5 Data quality dimensions and thresholds -- 6.1.5.6 Model agility -- 6.1.5.7 Data agility -- 6.1.6 JURION IPG -- 6.1.6.1 Introduction -- 6.1.6.2 Architecture -- 6.1.6.3 Tools and features -- 6.1.6.4 Implementation -- 6.1.6.5 Evaluation -- 6.1.6.6 Experimental evaluation -- 6.2 Seshat - Collecting and Curating High-Value Datasets with the Dacura Platform -- 6.2.1 Use Case -- 6.2.1.1 Problem statement -- 6.2.2 Architecture -- 6.2.2.1 Tools and features -- 6.2.3 Implementation -- 6.2.3.1 Dacura data curation platform -- 6.2.3.2 General description -- 6.2.3.3 Detailed process. , 6.2.4 Overview of the Model Catalogue -- 6.2.4.1 Model catalogue in the demonstrator system -- 6.2.5 Seshat Trial Platform Evaluation -- 6.2.5.1 Measuring overall value -- 6.2.5.2 Data quality dimensions and thresholds -- 6.3 Managing Data for the NHS -- 6.3.1 Introduction -- 6.3.2 Use Case -- 6.3.2.1 Quality -- 6.3.2.2 Agility -- 6.3.3 Architecture -- 6.3.4 Implementation -- 6.3.4.1 Model catalogue -- 6.3.4.2 NIHR health informatics collaborative -- 6.3.5 Evaluation -- 6.3.5.1 Productivity -- 6.3.5.2 Quality -- 6.3.5.3 Agility -- 6.4 Integrating Semantic Datasets into Enterprise Information Systems with PoolParty -- 6.4.1 Introduction -- 6.4.2 Problem Statement -- 6.4.2.1 Actors -- 6.4.3 Architecture -- 6.4.4 Implementation -- 6.4.4.1 Consistency violation detector -- 6.4.4.2 RDFUnit test generator -- 6.4.4.3 PoolParty integration -- 6.4.4.4 Notification adaptations -- 6.4.4.5 RDFUnit -- 6.4.4.6 Validation on import -- 6.4.5 Results -- 6.4.5.1 RDF constraints check -- 6.4.5.2 RDF validation -- 6.4.5.3 Improved notifications -- 6.4.5.4 Unified governance -- 6.4.6 Evaluation -- 6.4.6.1 Measuring overall value -- 6.4.6.2 Data quality dimensions and thresholds -- 6.4.6.3 Evaluation tasks -- 6.5 Data Validation at DBpedia -- 6.5.1 Introduction -- 6.5.2 Problem Statement -- 6.5.2.1 Actors -- 6.5.3 Architecture -- 6.5.4 Tools and Features -- 6.5.5 Implementation -- 6.5.6 Evaluation -- 6.5.6.1 Productivity -- 6.5.6.2 Quality -- 6.5.6.3 Agility -- Chapter 7 - Evaluation -- 7.1 Key Metrics for Evaluation -- 7.1.1 Productivity -- 7.1.2 Quality -- 7.1.3 Agility -- 7.1.4 Usability -- 7.2 ALIGNED Ethics Processes -- 7.3 Common Evaluation Framework -- 7.3.1 Productivity -- 7.3.2 Quality -- 7.3.3 Agility -- 7.4 ALIGNED Evaluation Ontology -- Appendix A - Requirements -- Index -- About the Editors -- Back Cover. , English
    Additional Edition: ISBN 87-7022-016-6
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Aalborg : River Publishers,
    UID:
    gbv_187023250X
    Format: 1 online resource (436 pages)
    ISBN: 8770220158 , 9788770220156 , 1523139056 , 9781523139057 , 9781003338123 , 1003338127 , 9781000792546 , 1000792544 , 9781000795868 , 1000795861
    Series Statement: River Publishers series in software engineering
    Content: Front Cover; Half Title Page; RIVER PUBLISHERS SERIES IN SOFTWARE ENGINEERING; Title Page; Copyright Page; Contents; Preface; Acknowledgements; List of Contributors; List of Figures; List of Tables; List of Abbreviations; Chapter 1 -- Introduction; 1.1 State of the Art in Engineering Data-Intensive Systems; 1.1.1 The Challenge; 1.2 State of the Art in Semantics-Driven Software Engineering; 1.2.1 The Challenge; 1.3 State of the Art in Data Quality Engineering; 1.3.1 The Challenge; 1.4 About ALIGNED; 1.5 ALIGNED Partners; 1.5.1 Trinity College Dublin
    Additional Edition: ISBN 8770220166
    Additional Edition: ISBN 9788770220163
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 8770220166
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Milton :River Publishers,
    UID:
    almahu_9949517323002882
    Format: 1 online resource (435 pages)
    ISBN: 9781000795868
    Content: Engineering Agile Big-Data Systems outlines an approach to dealing with these problems in software and data engineering, describing a methodology for aligning these processes throughout product lifecycles.
    Additional Edition: Print version: Feeney, Kevin Engineering Agile Big-Data Systems Milton : River Publishers,c2018 ISBN 9788770220163
    Language: English
    Keywords: Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    gbv_1832231518
    Format: 1 Online-Ressource (302 p.)
    ISBN: 9781003338123 , 9781000795868 , 9788770220163
    Content: To be effective, data-intensive systems require extensive ongoing customisation to reflect changing user requirements, organisational policies, and the structure and interpretation of the data they hold. Manual customisation is expensive, time-consuming, and error-prone. In large complex systems, the value of the data can be such that exhaustive testing is necessary before any new feature can be added to the existing design. In most cases, the precise details of requirements, policies and data will change during the lifetime of the system, forcing a choice between expensive modification and continued operation with an inefficient design.Engineering Agile Big-Data Systems outlines an approach to dealing with these problems in software and data engineering, describing a methodology for aligning these processes throughout product lifecycles. It discusses tools which can be used to achieve these goals, and, in a number of case studies, shows how the tools and methodology have been used to improve a variety of academic and business systems
    Note: English
    Language: Undetermined
    Author information: Hellmann, Sebastian 1981-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Milton :River Publishers,
    UID:
    kobvindex_HPB1378932649
    Format: 1 online resource (435 p.)
    ISBN: 9781000795868 , 1000795861
    Content: Engineering Agile Big-Data Systems outlines an approach to dealing with these problems in software and data engineering, describing a methodology for aligning these processes throughout product lifecycles.
    Note: Description based upon print version of record.
    Additional Edition: Print version: Feeney, Kevin Engineering Agile Big-Data Systems Milton : River Publishers,c2018 ISBN 9788770220163
    Language: English
    Keywords: Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Gistrup, Denmark :River Publishers,
    UID:
    edoccha_9959797971602883
    Format: 1 online resource (436 pages).
    Edition: 1st ed.
    ISBN: 1-00-333812-7 , 1-003-33812-7 , 1-000-79586-1 , 1-5231-3905-6 , 87-7022-015-8
    Series Statement: River Publishers series in software engineering
    Content: To be effective, data-intensive systems require extensive ongoing customisation to reflect changing user requirements, organisational policies, and the structure and interpretation of the data they hold. Manual customisation is expensive, time-consuming, and error-prone. In large complex systems, the value of the data can be such that exhaustive testing is necessary before any new feature can be added to the existing design. In most cases, the precise details of requirements, policies and data will change during the lifetime of the system, forcing a choice between expensive modification and continued operation with an inefficient design.Engineering Agile Big-Data Systems outlines an approach to dealing with these problems in software and data engineering, describing a methodology for aligning these processes throughout product lifecycles. It discusses tools which can be used to achieve these goals, and, in a number of case studies, shows how the tools and methodology have been used to improve a variety of academic and business systems.
    Note: Front Cover -- Half Title Page -- RIVER PUBLISHERS SERIES IN SOFTWARE ENGINEERING -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgements -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- Chapter 1 - Introduction -- 1.1 State of the Art in Engineering Data-Intensive Systems -- 1.1.1 The Challenge -- 1.2 State of the Art in Semantics-Driven Software Engineering -- 1.2.1 The Challenge -- 1.3 State of the Art in Data Quality Engineering -- 1.3.1 The Challenge -- 1.4 About ALIGNED -- 1.5 ALIGNED Partners -- 1.5.1 Trinity College Dublin -- 1.5.2 Oxford University - Department of Computer Science -- 1.5.3 Oxford University - School of Anthropology and Museum Ethnography -- 1.5.4 University of Leipzig - Agile Knowledge Engineering and Semantic Web (AKSW) -- 1.5.5 Semantic Web Company -- 1.5.6 Wolters Kluwer Germany -- 1.5.7 Adam Mickiewicz University in Pozna´n -- 1.5.8 Wolters Kluwer Poland -- 1.6 Structure -- Chapter 2 - ALIGNED Use Cases - Data and SoftwareEngineering Challenges -- 2.1 Introduction -- 2.2 The ALIGNED Use Cases -- 2.2.1 Seshat: Global History Databank -- 2.2.2 PoolParty Enterprise Application Demonstrator System -- 2.2.3 DBpedia -- 2.2.4 Jurion and Jurion IPG -- 2.2.5 Health Data Management -- 2.3 The ALIGNED Use Cases and Data Life Cycle. Major Challenges and Offered Solutions -- 2.4 The ALIGNED Use Cases and Software Life Cycle. Major Challenges and Offered Solutions -- 2.5 Conclusions -- Chapter 3 - Methodology -- 3.1 Introduction -- 3.2 Software and Data Engineering Life Cycles -- 3.2.1 Software Engineering Life Cycle -- 3.2.2 Data Engineering Life Cycle -- 3.3 Software Development Processes -- 3.3.1 Model-Driven Approaches -- 3.3.2 Formal Techniques -- 3.3.3 Test-Driven Development -- 3.4 Integration Points and Harmonisation -- 3.4.1 Integration Points. , 3.4.2 Barriers to Harmonisation -- 3.4.3 Methodology Requirements -- 3.5 An ALIGNED Methodology -- 3.5.1 A General Framework for Process Management -- 3.5.2 An Iterative Methodology and Illustration -- 3.6 Recommendations -- 3.6.1 Sample Methodology -- 3.7 Sample Synchronisation Point Activities -- 3.7.1 Model Catalogue: Analysis and Search/Browse/Explore -- 3.7.2 Model Catalogue: Design and Classify/Enrich -- 3.7.3 Semantic Booster: Implementation and Store/Query -- 3.7.4 Semantic Booster: Maintenance and Search/Browse/Explore -- 3.8 Summary -- 3.8.1 Related Work -- 3.9 Conclusions -- Chapter 4 - ALIGNED MetaModel Overview -- 4.1 Generic Metamodel -- 4.1.1 Basic Approach -- 4.1.2 Namespaces and URIs -- 4.1.3 Expressivity of Vocabularies -- 4.1.4 Reference Style for External Terms -- 4.1.5 Links with W3C PROV -- 4.2 ALIGNED Generic Metamodel -- 4.2.1 Design Intent Ontology (DIO) -- 4.3 Software Engineering -- 4.3.1 Software Life Cycle Ontology -- 4.3.2 Software Implementation Process Ontology (SIP) -- 4.4 Data Engineering -- 4.4.1 Data Life Cycle Ontology -- 4.5 DBpedia DataID (DataID) -- 4.6 Unified Quality Reports -- 4.6.1 Reasoning Violation Ontology (RVO) Overview -- 4.6.2 W3C SHACL Reporting Vocabulary -- 4.6.3 Data Quality Vocabulary -- 4.6.4 Test-Driven RDF Validation Ontology (RUT) -- 4.6.5 Enterprise Software Development (DIOPP) -- 4.6.6 Unified Governance Domain Ontologies -- 4.6.7 Semantic Booster and Model Catalogue Domain Ontology -- 4.6.7.1 Model catalogue -- 4.6.7.2 Booster -- 4.6.8 PROV16 -- 4.6.9 SKOS17 -- 4.6.10 OWL18 -- 4.6.11 RDFS19 -- 4.6.12 RDF20 -- Chapter 5 - Tools -- 5.1 Model Catalogue -- 5.1.1 Introduction -- 5.1.2 Model Catalogue -- 5.1.2.1 Architecture -- 5.1.2.2 Searching and browsing the catalogue -- 5.1.2.3 Editing the catalogue contents -- 5.1.2.4 Administration. , 5.1.2.5 Eclipse integration and model-driven development -- 5.1.2.6 Semantic reasoning -- 5.1.2.7 Automation and search -- 5.1.3 Semantic Booster -- 5.1.3.1 Introduction -- 5.1.3.2 Semantic Booster -- 5.2 RDFUnit -- 5.2.1 RDFUnit Integration -- 5.2.1.1 JUnit XML report-based integration -- 5.2.1.2 Custom apache maven-based integration -- 5.2.1.3 The shapes constraint language (SHACL) -- 5.2.1.4 Comparison of SHACL to schema definition usingRDFUnit test patterns -- 5.2.1.5 Comparison of SHACL to auto-generated RDFUnit testsfrom RDFS/OWL axioms -- 5.2.1.6 Progress on the SHACL specification andstandardisation process -- 5.2.1.7 SHACL support in RDFUnit -- 5.3 Expert Curation Tools and Workflows -- 5.3.1 Requirements -- 5.3.1.1 Graduated application of semantics -- 5.3.1.2 Graph - object mapping -- 5.3.1.3 Object/document level state management and versioning -- 5.3.1.4 Object-based workflow interfaces -- 5.3.1.5 Integrated, automated, constraint validation -- 5.3.1.6 Result interpretation -- 5.3.1.7 Deferred updates -- 5.3.2 Workflow/Process Models -- 5.3.2.1 Process model 1 - linked data object creation -- 5.3.2.2 Process model 2 object - linked data object updates -- 5.3.2.3 Process model 3 - updates to deferred updates -- 5.3.2.4 Process model 4 - schema updates -- 5.3.2.5 Process model 5 - validating schema updates -- 5.3.2.6 Process model 6 - named graph creation -- 5.3.2.7 Process model 7 - instance data updates and named graphs -- 5.4 Dacura Approval Queue Manager -- 5.5 Dacura Linked Data Object Viewer -- 5.5.1 CSP Design of Seshat Workflow Use Case -- 5.5.2 Specification -- 5.6 Dacura Quality Service -- 5.6.1 Technical Overview of Dacura Quality Service -- 5.6.2 Dacura Quality Service API -- 5.6.2.1 Resource and interchange format -- 5.6.2.2 URI -- 5.6.2.3 Literals -- 5.6.2.4 Literal types -- 5.6.2.5 Quads -- 5.6.2.6 POST variables. , 5.6.2.7 Tests -- 5.6.2.8 Required schema tests -- 5.6.2.9 Schema tests -- 5.6.2.10 Errors -- 5.6.2.11 Endpoints -- 5.7 Linked Data Model Mapping -- 5.7.1 Interlink Validation Tool -- 5.7.1.1 Interlink validation -- 5.7.1.2 Technical overview -- 5.7.1.3 Configuration via iv config.txt -- 5.7.1.4 Configuration via external datasets.txt -- 5.7.1.5 Execute the interlink validator tool -- 5.7.2 Dacura Linked Model Mapper -- 5.7.3 Model Mapper Service -- 5.7.3.1 Modelling tool - creating mappings -- 5.7.3.2 Importing semi-structured data with data harvesting tool -- 5.8 Model-Driven Data Curation -- 5.8.1 Dacura Quality Service Frame Generation -- 5.8.2 Frames for UserInterface Design -- 5.8.3 SemiFormal Frame Specification -- 5.8.4 Frame API Endpoints -- Chapter 6 - Use Cases -- 6.1 Wolters Kluwer - Re-Engineering a Complex Relationa lDatabase Application -- 6.1.1 Introduction -- 6.1.2 Problem Statement -- 6.1.3 Actors -- 6.1.4 Implementation -- 6.1.4.1 PoolParty notification extension -- 6.1.4.2 rsine notification extension -- 6.1.4.2.1 Results -- 6.1.4.3 RDFUnit for data transformation -- 6.1.4.4 PoolParty external link validity -- 6.1.4.5 Statistical overview -- 6.1.5 Evaluation -- 6.1.5.1 Productivity -- 6.1.5.2 Quality -- 6.1.5.3 Agility -- 6.1.5.4 Measuring overall value -- 6.1.5.5 Data quality dimensions and thresholds -- 6.1.5.6 Model agility -- 6.1.5.7 Data agility -- 6.1.6 JURION IPG -- 6.1.6.1 Introduction -- 6.1.6.2 Architecture -- 6.1.6.3 Tools and features -- 6.1.6.4 Implementation -- 6.1.6.5 Evaluation -- 6.1.6.6 Experimental evaluation -- 6.2 Seshat - Collecting and Curating High-Value Datasets with the Dacura Platform -- 6.2.1 Use Case -- 6.2.1.1 Problem statement -- 6.2.2 Architecture -- 6.2.2.1 Tools and features -- 6.2.3 Implementation -- 6.2.3.1 Dacura data curation platform -- 6.2.3.2 General description -- 6.2.3.3 Detailed process. , 6.2.4 Overview of the Model Catalogue -- 6.2.4.1 Model catalogue in the demonstrator system -- 6.2.5 Seshat Trial Platform Evaluation -- 6.2.5.1 Measuring overall value -- 6.2.5.2 Data quality dimensions and thresholds -- 6.3 Managing Data for the NHS -- 6.3.1 Introduction -- 6.3.2 Use Case -- 6.3.2.1 Quality -- 6.3.2.2 Agility -- 6.3.3 Architecture -- 6.3.4 Implementation -- 6.3.4.1 Model catalogue -- 6.3.4.2 NIHR health informatics collaborative -- 6.3.5 Evaluation -- 6.3.5.1 Productivity -- 6.3.5.2 Quality -- 6.3.5.3 Agility -- 6.4 Integrating Semantic Datasets into Enterprise Information Systems with PoolParty -- 6.4.1 Introduction -- 6.4.2 Problem Statement -- 6.4.2.1 Actors -- 6.4.3 Architecture -- 6.4.4 Implementation -- 6.4.4.1 Consistency violation detector -- 6.4.4.2 RDFUnit test generator -- 6.4.4.3 PoolParty integration -- 6.4.4.4 Notification adaptations -- 6.4.4.5 RDFUnit -- 6.4.4.6 Validation on import -- 6.4.5 Results -- 6.4.5.1 RDF constraints check -- 6.4.5.2 RDF validation -- 6.4.5.3 Improved notifications -- 6.4.5.4 Unified governance -- 6.4.6 Evaluation -- 6.4.6.1 Measuring overall value -- 6.4.6.2 Data quality dimensions and thresholds -- 6.4.6.3 Evaluation tasks -- 6.5 Data Validation at DBpedia -- 6.5.1 Introduction -- 6.5.2 Problem Statement -- 6.5.2.1 Actors -- 6.5.3 Architecture -- 6.5.4 Tools and Features -- 6.5.5 Implementation -- 6.5.6 Evaluation -- 6.5.6.1 Productivity -- 6.5.6.2 Quality -- 6.5.6.3 Agility -- Chapter 7 - Evaluation -- 7.1 Key Metrics for Evaluation -- 7.1.1 Productivity -- 7.1.2 Quality -- 7.1.3 Agility -- 7.1.4 Usability -- 7.2 ALIGNED Ethics Processes -- 7.3 Common Evaluation Framework -- 7.3.1 Productivity -- 7.3.2 Quality -- 7.3.3 Agility -- 7.4 ALIGNED Evaluation Ontology -- Appendix A - Requirements -- Index -- About the Editors -- Back Cover. , English
    Additional Edition: ISBN 87-7022-016-6
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Gistrup, Denmark :River Publishers,
    UID:
    edocfu_9959797971602883
    Format: 1 online resource (436 pages).
    Edition: 1st ed.
    ISBN: 1-00-333812-7 , 1-003-33812-7 , 1-000-79586-1 , 1-5231-3905-6 , 87-7022-015-8
    Series Statement: River Publishers series in software engineering
    Content: To be effective, data-intensive systems require extensive ongoing customisation to reflect changing user requirements, organisational policies, and the structure and interpretation of the data they hold. Manual customisation is expensive, time-consuming, and error-prone. In large complex systems, the value of the data can be such that exhaustive testing is necessary before any new feature can be added to the existing design. In most cases, the precise details of requirements, policies and data will change during the lifetime of the system, forcing a choice between expensive modification and continued operation with an inefficient design.Engineering Agile Big-Data Systems outlines an approach to dealing with these problems in software and data engineering, describing a methodology for aligning these processes throughout product lifecycles. It discusses tools which can be used to achieve these goals, and, in a number of case studies, shows how the tools and methodology have been used to improve a variety of academic and business systems.
    Note: Front Cover -- Half Title Page -- RIVER PUBLISHERS SERIES IN SOFTWARE ENGINEERING -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgements -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- Chapter 1 - Introduction -- 1.1 State of the Art in Engineering Data-Intensive Systems -- 1.1.1 The Challenge -- 1.2 State of the Art in Semantics-Driven Software Engineering -- 1.2.1 The Challenge -- 1.3 State of the Art in Data Quality Engineering -- 1.3.1 The Challenge -- 1.4 About ALIGNED -- 1.5 ALIGNED Partners -- 1.5.1 Trinity College Dublin -- 1.5.2 Oxford University - Department of Computer Science -- 1.5.3 Oxford University - School of Anthropology and Museum Ethnography -- 1.5.4 University of Leipzig - Agile Knowledge Engineering and Semantic Web (AKSW) -- 1.5.5 Semantic Web Company -- 1.5.6 Wolters Kluwer Germany -- 1.5.7 Adam Mickiewicz University in Pozna´n -- 1.5.8 Wolters Kluwer Poland -- 1.6 Structure -- Chapter 2 - ALIGNED Use Cases - Data and SoftwareEngineering Challenges -- 2.1 Introduction -- 2.2 The ALIGNED Use Cases -- 2.2.1 Seshat: Global History Databank -- 2.2.2 PoolParty Enterprise Application Demonstrator System -- 2.2.3 DBpedia -- 2.2.4 Jurion and Jurion IPG -- 2.2.5 Health Data Management -- 2.3 The ALIGNED Use Cases and Data Life Cycle. Major Challenges and Offered Solutions -- 2.4 The ALIGNED Use Cases and Software Life Cycle. Major Challenges and Offered Solutions -- 2.5 Conclusions -- Chapter 3 - Methodology -- 3.1 Introduction -- 3.2 Software and Data Engineering Life Cycles -- 3.2.1 Software Engineering Life Cycle -- 3.2.2 Data Engineering Life Cycle -- 3.3 Software Development Processes -- 3.3.1 Model-Driven Approaches -- 3.3.2 Formal Techniques -- 3.3.3 Test-Driven Development -- 3.4 Integration Points and Harmonisation -- 3.4.1 Integration Points. , 3.4.2 Barriers to Harmonisation -- 3.4.3 Methodology Requirements -- 3.5 An ALIGNED Methodology -- 3.5.1 A General Framework for Process Management -- 3.5.2 An Iterative Methodology and Illustration -- 3.6 Recommendations -- 3.6.1 Sample Methodology -- 3.7 Sample Synchronisation Point Activities -- 3.7.1 Model Catalogue: Analysis and Search/Browse/Explore -- 3.7.2 Model Catalogue: Design and Classify/Enrich -- 3.7.3 Semantic Booster: Implementation and Store/Query -- 3.7.4 Semantic Booster: Maintenance and Search/Browse/Explore -- 3.8 Summary -- 3.8.1 Related Work -- 3.9 Conclusions -- Chapter 4 - ALIGNED MetaModel Overview -- 4.1 Generic Metamodel -- 4.1.1 Basic Approach -- 4.1.2 Namespaces and URIs -- 4.1.3 Expressivity of Vocabularies -- 4.1.4 Reference Style for External Terms -- 4.1.5 Links with W3C PROV -- 4.2 ALIGNED Generic Metamodel -- 4.2.1 Design Intent Ontology (DIO) -- 4.3 Software Engineering -- 4.3.1 Software Life Cycle Ontology -- 4.3.2 Software Implementation Process Ontology (SIP) -- 4.4 Data Engineering -- 4.4.1 Data Life Cycle Ontology -- 4.5 DBpedia DataID (DataID) -- 4.6 Unified Quality Reports -- 4.6.1 Reasoning Violation Ontology (RVO) Overview -- 4.6.2 W3C SHACL Reporting Vocabulary -- 4.6.3 Data Quality Vocabulary -- 4.6.4 Test-Driven RDF Validation Ontology (RUT) -- 4.6.5 Enterprise Software Development (DIOPP) -- 4.6.6 Unified Governance Domain Ontologies -- 4.6.7 Semantic Booster and Model Catalogue Domain Ontology -- 4.6.7.1 Model catalogue -- 4.6.7.2 Booster -- 4.6.8 PROV16 -- 4.6.9 SKOS17 -- 4.6.10 OWL18 -- 4.6.11 RDFS19 -- 4.6.12 RDF20 -- Chapter 5 - Tools -- 5.1 Model Catalogue -- 5.1.1 Introduction -- 5.1.2 Model Catalogue -- 5.1.2.1 Architecture -- 5.1.2.2 Searching and browsing the catalogue -- 5.1.2.3 Editing the catalogue contents -- 5.1.2.4 Administration. , 5.1.2.5 Eclipse integration and model-driven development -- 5.1.2.6 Semantic reasoning -- 5.1.2.7 Automation and search -- 5.1.3 Semantic Booster -- 5.1.3.1 Introduction -- 5.1.3.2 Semantic Booster -- 5.2 RDFUnit -- 5.2.1 RDFUnit Integration -- 5.2.1.1 JUnit XML report-based integration -- 5.2.1.2 Custom apache maven-based integration -- 5.2.1.3 The shapes constraint language (SHACL) -- 5.2.1.4 Comparison of SHACL to schema definition usingRDFUnit test patterns -- 5.2.1.5 Comparison of SHACL to auto-generated RDFUnit testsfrom RDFS/OWL axioms -- 5.2.1.6 Progress on the SHACL specification andstandardisation process -- 5.2.1.7 SHACL support in RDFUnit -- 5.3 Expert Curation Tools and Workflows -- 5.3.1 Requirements -- 5.3.1.1 Graduated application of semantics -- 5.3.1.2 Graph - object mapping -- 5.3.1.3 Object/document level state management and versioning -- 5.3.1.4 Object-based workflow interfaces -- 5.3.1.5 Integrated, automated, constraint validation -- 5.3.1.6 Result interpretation -- 5.3.1.7 Deferred updates -- 5.3.2 Workflow/Process Models -- 5.3.2.1 Process model 1 - linked data object creation -- 5.3.2.2 Process model 2 object - linked data object updates -- 5.3.2.3 Process model 3 - updates to deferred updates -- 5.3.2.4 Process model 4 - schema updates -- 5.3.2.5 Process model 5 - validating schema updates -- 5.3.2.6 Process model 6 - named graph creation -- 5.3.2.7 Process model 7 - instance data updates and named graphs -- 5.4 Dacura Approval Queue Manager -- 5.5 Dacura Linked Data Object Viewer -- 5.5.1 CSP Design of Seshat Workflow Use Case -- 5.5.2 Specification -- 5.6 Dacura Quality Service -- 5.6.1 Technical Overview of Dacura Quality Service -- 5.6.2 Dacura Quality Service API -- 5.6.2.1 Resource and interchange format -- 5.6.2.2 URI -- 5.6.2.3 Literals -- 5.6.2.4 Literal types -- 5.6.2.5 Quads -- 5.6.2.6 POST variables. , 5.6.2.7 Tests -- 5.6.2.8 Required schema tests -- 5.6.2.9 Schema tests -- 5.6.2.10 Errors -- 5.6.2.11 Endpoints -- 5.7 Linked Data Model Mapping -- 5.7.1 Interlink Validation Tool -- 5.7.1.1 Interlink validation -- 5.7.1.2 Technical overview -- 5.7.1.3 Configuration via iv config.txt -- 5.7.1.4 Configuration via external datasets.txt -- 5.7.1.5 Execute the interlink validator tool -- 5.7.2 Dacura Linked Model Mapper -- 5.7.3 Model Mapper Service -- 5.7.3.1 Modelling tool - creating mappings -- 5.7.3.2 Importing semi-structured data with data harvesting tool -- 5.8 Model-Driven Data Curation -- 5.8.1 Dacura Quality Service Frame Generation -- 5.8.2 Frames for UserInterface Design -- 5.8.3 SemiFormal Frame Specification -- 5.8.4 Frame API Endpoints -- Chapter 6 - Use Cases -- 6.1 Wolters Kluwer - Re-Engineering a Complex Relationa lDatabase Application -- 6.1.1 Introduction -- 6.1.2 Problem Statement -- 6.1.3 Actors -- 6.1.4 Implementation -- 6.1.4.1 PoolParty notification extension -- 6.1.4.2 rsine notification extension -- 6.1.4.2.1 Results -- 6.1.4.3 RDFUnit for data transformation -- 6.1.4.4 PoolParty external link validity -- 6.1.4.5 Statistical overview -- 6.1.5 Evaluation -- 6.1.5.1 Productivity -- 6.1.5.2 Quality -- 6.1.5.3 Agility -- 6.1.5.4 Measuring overall value -- 6.1.5.5 Data quality dimensions and thresholds -- 6.1.5.6 Model agility -- 6.1.5.7 Data agility -- 6.1.6 JURION IPG -- 6.1.6.1 Introduction -- 6.1.6.2 Architecture -- 6.1.6.3 Tools and features -- 6.1.6.4 Implementation -- 6.1.6.5 Evaluation -- 6.1.6.6 Experimental evaluation -- 6.2 Seshat - Collecting and Curating High-Value Datasets with the Dacura Platform -- 6.2.1 Use Case -- 6.2.1.1 Problem statement -- 6.2.2 Architecture -- 6.2.2.1 Tools and features -- 6.2.3 Implementation -- 6.2.3.1 Dacura data curation platform -- 6.2.3.2 General description -- 6.2.3.3 Detailed process. , 6.2.4 Overview of the Model Catalogue -- 6.2.4.1 Model catalogue in the demonstrator system -- 6.2.5 Seshat Trial Platform Evaluation -- 6.2.5.1 Measuring overall value -- 6.2.5.2 Data quality dimensions and thresholds -- 6.3 Managing Data for the NHS -- 6.3.1 Introduction -- 6.3.2 Use Case -- 6.3.2.1 Quality -- 6.3.2.2 Agility -- 6.3.3 Architecture -- 6.3.4 Implementation -- 6.3.4.1 Model catalogue -- 6.3.4.2 NIHR health informatics collaborative -- 6.3.5 Evaluation -- 6.3.5.1 Productivity -- 6.3.5.2 Quality -- 6.3.5.3 Agility -- 6.4 Integrating Semantic Datasets into Enterprise Information Systems with PoolParty -- 6.4.1 Introduction -- 6.4.2 Problem Statement -- 6.4.2.1 Actors -- 6.4.3 Architecture -- 6.4.4 Implementation -- 6.4.4.1 Consistency violation detector -- 6.4.4.2 RDFUnit test generator -- 6.4.4.3 PoolParty integration -- 6.4.4.4 Notification adaptations -- 6.4.4.5 RDFUnit -- 6.4.4.6 Validation on import -- 6.4.5 Results -- 6.4.5.1 RDF constraints check -- 6.4.5.2 RDF validation -- 6.4.5.3 Improved notifications -- 6.4.5.4 Unified governance -- 6.4.6 Evaluation -- 6.4.6.1 Measuring overall value -- 6.4.6.2 Data quality dimensions and thresholds -- 6.4.6.3 Evaluation tasks -- 6.5 Data Validation at DBpedia -- 6.5.1 Introduction -- 6.5.2 Problem Statement -- 6.5.2.1 Actors -- 6.5.3 Architecture -- 6.5.4 Tools and Features -- 6.5.5 Implementation -- 6.5.6 Evaluation -- 6.5.6.1 Productivity -- 6.5.6.2 Quality -- 6.5.6.3 Agility -- Chapter 7 - Evaluation -- 7.1 Key Metrics for Evaluation -- 7.1.1 Productivity -- 7.1.2 Quality -- 7.1.3 Agility -- 7.1.4 Usability -- 7.2 ALIGNED Ethics Processes -- 7.3 Common Evaluation Framework -- 7.3.1 Productivity -- 7.3.2 Quality -- 7.3.3 Agility -- 7.4 ALIGNED Evaluation Ontology -- Appendix A - Requirements -- Index -- About the Editors -- Back Cover. , English
    Additional Edition: ISBN 87-7022-016-6
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 8770220506?
Did you mean 8770220336?
Did you mean 8770220360?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages