Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
Fachgebiete(RVK)
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Amsterdam [u.a.] :Morgan Kaufmann/Elsevier,
    UID:
    almafu_BV042305305
    Umfang: 1 Online-Ressource (XII, 406 S.) : , Ill., graph. Darst.
    ISBN: 978-0-08-091936-2 , 0-08-091936-7
    Anmerkung: The Bayesian network is one of the most important architectures for representing and reasoning with multivariate probability distributions. When used in conjunction with specialized informatics, possibilities of real-world applications are achieved. Probabilistic Methods for BioInformatics explains the application of probability and statistics, in particular Bayesian networks, to genetics. This book provides background material on probability, statistics, and genetics, and then moves on to discuss Bayesian networks and applications to bioinformatics. Rather than getting bogged down in proofs and algorithms, probabilistic methods used for biological information and Bayesian networks are explained in an accessible way using applications and case studies. The many useful applications of Bayesian networks that have been developed in the past 10 years are discussed. Forming a review of all the significant work in the field that will arguably become the most prevalent method in biological data analysis. Unique coverage of probabilistic reasoning methods applied to bioinformatics data--those methods that are likely to become the standard analysis tools for bioinformatics. Shares insights about when and why probabilistic methods can and cannot be used effectively; Complete review of Bayesian networks and probabilistic methods with a practical approach. - Includes bibliographical references (pages 387-399) and index
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-0-12-370476-4
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 0-12-370476-6
    Sprache: Englisch
    Fachgebiete: Biologie
    RVK:
    Schlagwort(e): Bioinformatik ; Bayes-Verfahren ; Wahrscheinlichkeitstheorie ; Electronic books ; Electronic books
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Amsterdam ; : Morgan Kaufmann Publishers,
    UID:
    almahu_9948025602402882
    Umfang: 1 online resource (421 p.)
    Ausgabe: 1st edition
    ISBN: 1-282-16842-8 , 9786612168420 , 0-08-091936-7
    Inhalt: The Bayesian network is one of the most important architectures for representing and reasoning with multivariate probability distributions. When used in conjunction with specialized informatics, possibilities of real-world applications are achieved. Probabilistic Methods for BioInformatics explains the application of probability and statistics, in particular Bayesian networks, to genetics. This book provides background material on probability, statistics, and genetics, and then moves on to discuss Bayesian networks and applications to bioinformatics. Rather than getting bogged down
    Anmerkung: Description based upon print version of record. , Front Cover; Probabilistic Methods for Bioinformatics: with an Introduction to Bayesian Networks; Copyright Page; Contents; Preface; About the Author; Part I: Background; Chapter 1. Probabilistic Informatics; 1.1 What Is Informatics?; 1.2 Bioinformatics; 1.3 Probabilistic Informatics; 1.4 Outline of This Book; Chapter 2. Probability Basics; 2.1 Probability Basics; 2.2 Random Variables; 2.3 The Meaning of Probability; 2.4 Random Variables in Applications; Chapter 3. Statistics Basics; 3.1 Basic Concepts; 3.2 Markov Chain Monte Carlo; 3.3 The Normal Distribution; Chapter 4. Genetics Basics , 4.1 Organisms and Cells4.2 Genes; 4.3 Mutations; Part II: Bayesian Networks; Chapter 5. Foundations of Bayesian Networks; 5.1 What Is a Bayesian Network?; 5.2 Properties of Bayesian Networks; 5.3 Causal Networks as Bayesian Networks; 5.4 Inference in Bayesian Networks; 5.5 Networks with Continuous Variables; 5.6 How Do We Obtain the Probabilities?; Chapter 6. Further Properties of Bayesian Networks; 6.1 Entailed Conditional Independencies; 6.2 Faithfulness; 6.3 Markov Equivalence; 6.4 Markov Blankets and Boundaries; Chapter 7. Learning Bayesian Network Parameters , 7.1 Learning a Single Parameter7.2 Learning Parameters in a Bayesian Network; Chapter 8. Learning Bayesian Network Structure; 8.1 Model Selection; 8.2 Score-Based Structure Learning; 8.3 Constraint-Based Structure Learning; 8.4 Causal Learning; 8.5 Model Averaging; 8.6 Approximate Structure Learning; 8.7 Software Packages for Learning; Part III: Bioinformatics Applications; Chapter 9. Nonmolecular Evolutionary Genetics; 9.1 No Mutations, Selection, or Genetic Drift; 9.2 Natural Selection; 9.3 Genetic Drift; 9.4 Natural Selection and Genetic Drift; 9.5 Rate of Substitution , Chapter 10. Molecular Evolutionary Genetics10.1 Models of Nucleotide Substitution; 10.2 Evolutionary Distance; 10.3 Sequence Alignment; Chapter 11. Molecular Phylogenetics; 11.1 Phylogenetic Trees; 11.2 Distance Matrix Learning Methods; 11.3 Maximum Likelihood Method; 11.4 Distance Matrix Methods Using ML; Chapter 12. Analyzing Gene Expression Data; 12.1 DNA Microarrays; 12.2 A Bootstrap Approach; 12.3 Model Averaging Approaches; 12.4 Module Network Approach; Chapter 13. Genetic Linkage Analysis; 13.1 Introduction to Genetic Linkage Analysis; 13.2 Genetic Linkage Analysis in Humans , 13.3 A Bayesian Network ModelBibliography; Index , English
    Weitere Ausg.: ISBN 0-12-370476-6
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Amsterdam [u.a.] :Morgan Kaufmann/Elsevier,
    UID:
    edocfu_BV042305305
    Umfang: 1 Online-Ressource (XII, 406 S.) : , Ill., graph. Darst.
    ISBN: 978-0-08-091936-2 , 0-08-091936-7
    Anmerkung: The Bayesian network is one of the most important architectures for representing and reasoning with multivariate probability distributions. When used in conjunction with specialized informatics, possibilities of real-world applications are achieved. Probabilistic Methods for BioInformatics explains the application of probability and statistics, in particular Bayesian networks, to genetics. This book provides background material on probability, statistics, and genetics, and then moves on to discuss Bayesian networks and applications to bioinformatics. Rather than getting bogged down in proofs and algorithms, probabilistic methods used for biological information and Bayesian networks are explained in an accessible way using applications and case studies. The many useful applications of Bayesian networks that have been developed in the past 10 years are discussed. Forming a review of all the significant work in the field that will arguably become the most prevalent method in biological data analysis. Unique coverage of probabilistic reasoning methods applied to bioinformatics data--those methods that are likely to become the standard analysis tools for bioinformatics. Shares insights about when and why probabilistic methods can and cannot be used effectively; Complete review of Bayesian networks and probabilistic methods with a practical approach. - Includes bibliographical references (pages 387-399) and index
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-0-12-370476-4
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 0-12-370476-6
    Sprache: Englisch
    Schlagwort(e): Bioinformatik ; Bayes-Verfahren ; Wahrscheinlichkeitstheorie
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Amsterdam [u.a.] :Morgan Kaufmann/Elsevier,
    UID:
    edoccha_BV042305305
    Umfang: 1 Online-Ressource (XII, 406 S.) : , Ill., graph. Darst.
    ISBN: 978-0-08-091936-2 , 0-08-091936-7
    Anmerkung: The Bayesian network is one of the most important architectures for representing and reasoning with multivariate probability distributions. When used in conjunction with specialized informatics, possibilities of real-world applications are achieved. Probabilistic Methods for BioInformatics explains the application of probability and statistics, in particular Bayesian networks, to genetics. This book provides background material on probability, statistics, and genetics, and then moves on to discuss Bayesian networks and applications to bioinformatics. Rather than getting bogged down in proofs and algorithms, probabilistic methods used for biological information and Bayesian networks are explained in an accessible way using applications and case studies. The many useful applications of Bayesian networks that have been developed in the past 10 years are discussed. Forming a review of all the significant work in the field that will arguably become the most prevalent method in biological data analysis. Unique coverage of probabilistic reasoning methods applied to bioinformatics data--those methods that are likely to become the standard analysis tools for bioinformatics. Shares insights about when and why probabilistic methods can and cannot be used effectively; Complete review of Bayesian networks and probabilistic methods with a practical approach. - Includes bibliographical references (pages 387-399) and index
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-0-12-370476-4
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 0-12-370476-6
    Sprache: Englisch
    Schlagwort(e): Bioinformatik ; Bayes-Verfahren ; Wahrscheinlichkeitstheorie
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780080513362?
Meinten Sie 9780080951362?
Meinten Sie 9780080999364?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz