UID:
almafu_9960073701902883
Format:
1 online resource (0 p.)
Edition:
Second edition.
ISBN:
0-08-100007-3
Note:
Description based upon print version of record.
,
Front Cover -- Marine Structural Design -- Copyright -- Contents -- Preface to First Edition -- Preface to Second Edition -- Part 1 Structural Design Principles -- 1 - Introduction -- 1.1 Structural Design Principles -- 1.1.1 Introduction -- 1.1.2 Limit-State Design -- 1.2 Strength and Fatigue Analysis -- 1.2.1 Ultimate Strength Criteria -- 1.2.2 Design for Accidental Loads -- 1.2.3 Design for Fatigue -- 1.3 Structural Reliability Applications -- 1.3.1 Structural Reliability Concepts -- 1.3.2 Reliability-Based Calibration of Design Factor -- 1.3.3 Requalification of Existing Structures -- 1.4 Risk Assessment -- 1.4.1 Application of Risk Assessment -- 1.4.2 Risk-Based Inspection -- 1.4.3 Human and Organization Factors -- 1.5 Layout of This Book -- 1.6 How to Use This Book -- References -- 2 - Marine Composite Materials and Structure -- 2.1 Introduction -- 2.2 The Application of Composites in the Marine Industry -- 2.2.1 Ocean Environment -- 2.2.2 Application in the Shipbuilding Industry -- Pleasure Boats Industry -- Recreational Applications -- Commercial Applications -- Military Applications -- 2.2.3 Marine Aviation Vehicles and Off-Shore Structure -- 2.3 Composite Material Structure -- 2.3.1 Fiber Reinforcements -- Glass Fibers -- Aramid Fibers -- Carbon Fibers -- 2.3.2 Resin Systems -- 2.4 Material Property -- 2.4.1 Orthotropic Properties -- 2.4.2 Orthotropic Properties in Plane Stress -- 2.5 Key Challenges for the Future of Marine Composite Materials -- References -- 3 - Green Ship Concepts -- 3.1 General -- 3.2 Emissions -- 3.2.1 Regulations on Air Pollution -- 3.2.2 Regulations on GHGs -- 3.2.3 Effect of Design Variables on the EEDI -- 3.2.4 Influence of Speed on the EEDI -- 3.2.5 Influence of Hull Steel Weight on the EEDI -- 3.3 Ballast Water Treatment -- 3.4 Underwater Coatings -- References -- 4 - LNG Carrier -- 4.1 Introduction.
,
4.2 Development -- 4.3 Typical Cargo Cycle -- 4.3.1 Inert -- 4.3.2 Gas Up -- 4.3.3 Cool Down -- 4.3.4 Bulk Loading -- 4.3.5 Voyage -- 4.3.6 Discharge -- 4.3.7 Gas Free -- 4.4 Containment Systems -- 4.4.1 Self-Supporting Type -- Moss Tanks (Spherical IMO-Type B LNG Tanks) -- IHI (Prismatic IMO-Type B LNG Tanks) -- 4.4.2 Membrane Type -- GT96 -- TGZ Mark III -- CS1 -- 4.5 Structural Design of the LNG Carrier -- 4.5.1 ULS (Ultimate Limit State) Design of the LNG Carrier -- Design of the LNG Carrier Hull Girder -- Design Principles -- Design Wave -- Global Load Conditions -- Load Condition 1-Maximum Hogging -- Load Condition 2-Maximum Sagging -- Combination of Stresses -- Longitudinal Stresses -- Transverse Stresses -- Shear Stresses -- Capacity Checks -- General Principles -- Hull Girder Moment Capacity Checks -- Hull Girder Shear Capacity Check -- 4.6 Fatigue Design of an LNG Carrier -- 4.6.1 Preliminary Design Phase -- 4.6.2 Fatigue Design Phase -- References -- 5 - Wave Loads for Ship Design and Classification -- 5.1 Introduction -- 5.2 Ocean Waves and Wave Statistics -- 5.2.1 Basic Elements of Probability and Random Processes -- 5.2.2 Statistical Representation of the Sea Surface -- 5.2.3 Ocean Wave Spectra -- 5.2.4 Moments of Spectral Density Function -- 5.2.5 Statistical Determination of Wave Heights and Periods -- 5.3 Ship Response to a Random Sea -- 5.3.1 Introduction -- 5.3.2 Wave-Induced Forces -- 5.3.3 Structural Response -- 5.3.4 Slamming and Green Water on Deck -- 5.4 Ship Design for Classification -- 5.4.1 Design Value of Ship Response -- 5.4.2 Design Loads per Classification Rules -- General -- Load Components -- Hull Girder Loads -- External Pressure -- Internal Tank Pressure -- References -- 6 - Wind Loads for Offshore Structures -- 6.1 Introduction -- 6.2 Classification Rules for Design -- 6.2.1 Wind Data -- 6.2.2 Wind Conditions.
,
General -- Wind Profile -- Turbulence -- Wind Spectra -- Hurricanes -- 6.2.3 Wind Loads -- General -- Wind Pressure -- Wind Forces -- Circular Cylinders -- Rectangular Cross Sections -- Finite Length Effects -- Other Structures -- Dynamic Wind Analysis -- Model Wind Tunnel Tests -- Computational Fluid Dynamics -- 6.3 Research of Wind Loads on Ships and Platforms -- 6.3.1 Wind Loads on Ships -- 6.3.2 Wind Loads on Platforms -- References -- 7 - Loads and Dynamic Response for Offshore Structures -- 7.1 General -- 7.2 Environmental Conditions -- 7.2.1 Environmental Criteria -- Wind -- Waves -- Current -- 7.2.2 Regular Waves -- 7.2.3 Irregular Waves -- 7.2.4 Wave Scatter Diagram -- 7.3 Environmental Loads and Floating Structure Dynamics -- 7.3.1 Environmental Loads -- 7.3.2 Sea Loads on Slender Structures -- 7.3.3 Sea Loads on Large-Volume Structures -- 7.3.4 Floating Structure Dynamics -- 7.4 Structural Response Analysis -- 7.4.1 Structural Analysis -- 7.4.2 Response Amplitude Operator -- 7.5 Extreme Values -- 7.5.1 General -- 7.5.2 Short-Term Extreme Approach -- 7.5.3 Long-Term Extreme Approach -- 7.5.4 Prediction of Most Probable Maximum Extreme for Non-Gaussian Process -- Drag/Inertia Parameter Method -- Weibull Fitting -- Gumbel Fitting -- Winterstein/Jensen method -- 7.6 Concluding Remarks -- References -- Appendix A: Elastic Vibrations of Beams -- Vibration of a Spring/Mass System -- Elastic Vibration of Beams -- 8 - Scantling of Ship's Hulls by Rules -- 8.1 General -- 8.2 Basic Concepts of Stability and Strength of Ships -- 8.2.1 Stability -- 8.2.2 Strength -- 8.2.3 Corrosion Allowance -- 8.3 Initial Scantling Criteria for Longitudinal Strength -- 8.3.1 Introduction -- 8.3.2 Hull Girder Strength -- Longitudinal stress -- Shear stress -- 8.4 Initial Scantling Criteria for Transverse Strength -- 8.4.1 Introduction -- 8.4.2 Transverse Strength.
,
8.5 Initial Scantling Criteria for Local Strength -- 8.5.1 Local Bending of Beams -- Stiffeners -- Girders -- 8.5.2 Local Bending Strength of Plates -- 8.5.3 Structure Design of Bulkheads, Decks, and Bottom -- 8.5.4 Buckling of Platings -- General -- Elastic compressive buckling stress -- Buckling evaluation -- 8.5.5 Buckling of Profiles -- References -- 9 - Ship Hull Scantling Design by Analysis -- 9.1 General -- 9.2 Design Loads -- 9.3 Strength Analysis Using Finite Element Methods -- 9.3.1 Modeling -- Global Analysis -- Local Structural Models -- Cargo Hold and Ballast Tank Model -- Frame and Girder Model -- Stress Concentration Area -- Fatigue Model -- 9.3.2 Boundary Conditions -- 9.3.3 Types of Elements -- 9.3.4 Postprocessing -- Yielding Check -- Buckling Check -- 9.4 Fatigue Damage Evaluation -- 9.4.1 General -- 9.4.2 Fatigue Check -- References -- 10 - Offshore Soil Geotechnics -- 10.1 Introduction -- 10.2 Subsea Soil Investigation -- 10.2.1 Offshore Soil Investigation Equipment Requirements -- General -- Seabed Corer Equipment -- Piezocone Penetration Test -- Drill Rig -- Downhole Equipment -- Laboratory Equipment -- 10.2.2 Subsea Survey Equipment Interfaces -- Onboard Laboratory Test -- Core Preparation -- Onshore Laboratory Tests -- Nearshore Geotechnical Investigations -- 10.3 Deepwater Foundation -- 10.3.1 Foundations for Mooring -- 10.3.2 Suction Caisson -- 10.3.3 Spudcan Footings -- 10.3.4 Pipe Piles -- Axial Capacity -- References -- 11 - Offshore Structural Analysis -- 11.1 Introduction -- 11.1.1 General -- 11.1.2 Design Codes -- 11.1.3 Government Requirements -- 11.1.4 Certification/Classification Authorities -- 11.1.5 Codes and Standards -- 11.1.6 Other Technical Documents -- 11.2 Project Planning -- 11.2.1 General -- 11.2.2 Design Basis -- Unit Description and Main Dimensions -- Rules, Regulations and Codes.
,
Stability and Compartmentalization -- Materials and Welding -- Temporary Phases -- Operational Design Criteria -- In-service Inspection and Repair -- Reassessment -- 11.2.3 Design Brief -- Analysis Models -- Analysis Procedures -- Structural Evaluation -- 11.3 Use of Finite Element Analysis -- 11.3.1 Introduction -- Basic Ideas behind FEM -- Computation Based on FEM -- Marine Applications of FEM -- 11.3.2 Stiffness Matrix for 2D Beam Elements -- 11.3.3 Stiffness Matrix for 3D Beam Elements -- 11.4 Design Loads and Load Application -- Dead Loads -- Variable Loads -- Static Sea Pressure -- Wave-Induced Loads -- Wind Loads -- 11.5 Structural Modeling -- 11.5.1 General -- 11.5.2 Jacket Structures -- Analysis Models -- Modeling for Ultimate Strength Analysis -- Modeling for Fatigue Analysis -- Assessment of Existing Platforms -- Fire, Blast, and Accidental Loading -- 11.5.3 Floating Production and Offloading Systems (FPSO) -- Structural Design General -- Analysis Models -- Modeling for Ultimate Strength Analysis -- Modeling for Compartmentalization and Stability -- Modeling for Fatigue Analysis -- 11.5.4 TLP, Spar, and Semisubmersible -- References -- 12 - Development of Arctic Offshore Technology -- 12.1 Historical Background -- 12.2 The Research Incentive -- 12.3 Industrial Development in Cold Regions -- 12.3.1 Arctic Ships -- 12.3.2 Offshore Structures -- 12.4 The Arctic Offshore Technology Program -- 12.4.1 Three Areas of Focus -- 12.4.2 Environmental and Climatic Change -- 12.4.3 Materials for the Arctic -- 12.5 Highlights -- 12.5.1 Mechanical Resistance to Slip Movement in Level Ice -- 12.5.2 Ice Forces on Fixed Structures -- 12.5.3 Concrete Durability in Arctic Offshore Structures -- 12.6 Conclusion -- References -- 13 - Limit-State Design of Offshore Structures -- 13.1 Limit-State Design -- 13.2 ULS Design.
,
13.2.1 Ductility and Brittle Fracture Avoidance.
,
English
Additional Edition:
ISBN 0-08-099997-2
Language:
English
Bookmarklink