UID:
almahu_9949983707402882
Umfang:
1 online resource (622 pages) :
,
illustrations.
ISBN:
9780081003596
,
0081003595
,
9780081003558
,
0081003552
Serie:
Developments in Clay Science ; Volume 8
Anmerkung:
Front Cover -- Infrared and Raman Spectroscopies of Clay Minerals -- Copyright -- Dedication -- Contents -- Contributors -- Acknowledgements -- Chapter 1: General Introduction -- 1.1. Origin and Content of the Book -- 1.2. Victor Colin Farmer (1920-2006) -- 1.3. Perspectives and Concluding Remarks -- Chapter 2: Theoretical Aspects of Infrared and Raman Spectroscopies -- 2.1. Introduction -- 2.2. Lattice Dynamics in the Harmonic Approximation -- 2.2.1. Classical Model of Crystal Vibrations -- 2.2.2. Categorisation and Symmetry of Vibrational Modes -- 2.2.3. Relation to the Quantum Mechanical Description of Vibrational Properties -- 2.2.4. Anharmonic Vibrational Properties -- 2.3. Probing the Vibrational Modes with IR Light -- 2.3.1. Drude-Lorentz Model Applied to IR Spectroscopy -- 2.3.2. Low-Frequency Dielectric Permittivity Tensor of a Crystal and Born Effective Charge Tensors -- 2.3.3. IR Spectroscopy of Powder Materials -- 2.3.3.1. Light Reflection and Transmission by an Isotropic Dielectric Slab -- 2.3.3.1.1. IR Absorption by Isolated Small Particles in a Nonabsorbing Matrix -- 2.3.3.1.2. Effective Dielectric Functions of Composite Samples -- 2.3.3.2. Infrared Emission Spectroscopy (IES) -- 2.4. Raman Spectroscopy -- 2.5. Modeling of Vibrational Spectra from First Principles -- Chapter 3: Modern Infrared and Raman Instrumentation and Sampling Methods -- 3.1. Introduction -- 3.2. Instrumentation -- 3.2.1. IR Spectroscopy -- 3.2.2. Raman Spectroscopy -- 3.2.3. IR and Raman Microscopies -- 3.2.4. Portable and Miniature Instruments -- 3.3. IR Sampling Techniques -- 3.3.1. Transmission Through Dispersions in Transparent Media -- 3.3.2. Transmission Through Thin Films -- 3.3.3. External Specular Reflection -- 3.3.4. Reflection-Absorption of Thin Films on Mirror Substrates -- 3.3.5. Diffuse Reflectance MIR and NIR Spectroscopies.
,
3.3.6. IR Emission -- 3.3.7. Photoacoustic Spectroscopy -- 3.3.8. Internal Reflection IR and Attenuated Total Reflectance (ATR) Spectroscopy -- 3.3.9. Combined Acquisition in the MIR and NIR -- 3.4. Raman Sampling Techniques -- 3.5. Epilogue -- Chapter 4: Spectral Manipulation and Introduction to Multivariate Analysis -- 4.1. Introduction -- 4.2. Overview of Postcollection Spectral Processing -- 4.2.1. Smoothing -- 4.2.2. Baseline Corrections -- 4.2.3. Atmospheric Compensation -- 4.2.4. Normalisation -- 4.3. Identification and Separation of Overlapping Vibrational Transitions -- 4.3.1. Decomposition of Overlapping Bands -- 4.3.2. Derivative Analysis -- 4.4. Multivariate Analysis and Chemometric Quantification -- 4.4.1. Introduction to PCA and PLS -- 4.4.2. Training (Calibration) and Property datasets -- 4.4.3. Validation and Optimum Dimensionality -- 4.4.4. PCA and PCR Chemometrics in the Study of Clay Minerals -- 4.4.5. PLS Chemometrics for Clay Mineral Processing Applications -- 4.5. Concluding Remarks -- Chapter 5: IR Spectra of Clay Minerals -- 5.1. Introduction -- 5.2. Experimental -- 5.3. Characteristic Vibrations of Clay Minerals -- 5.4. The 1:1 Clay Minerals -- 5.4.1. Dioctahedral 1:1 Clay Minerals: The Kaolin Group -- 5.4.2. Trioctahedral 1:1 Clay Minerals: The Serpentine Group -- 5.5. The 2:1 Clay Minerals -- 5.5.1. Pyrophyllite, Talc -- 5.5.2. Smectites -- 5.5.2.1. Dioctahedral Smectites -- 5.5.2.2. Trioctahedral Smectites -- 5.5.3. Vermiculite, Illite and Micas -- 5.5.4. Chlorites -- 5.6. Palygorskite, Sepiolite -- 5.7. Conclusions -- Chapter 6: Raman Spectroscopy of Clay Minerals -- 6.1. Introduction -- 6.2. Hydroxyl Stretching Region -- 6.2.1. The 1:1 Clay Minerals -- 6.2.1.1. The Kaolin Group Minerals -- 6.2.1.2. The Serpentine Group Minerals -- 6.2.2. The 2:1 Clay Minerals -- 6.2.2.1. Pyrophyllite and Talc -- 6.2.2.2. Smectites.
,
6.2.2.3. Vermiculite -- 6.3. Theory of the Low Wavenumber Vibrational Modes -- 6.3.1. The 1:1 Clay Minerals -- 6.3.2. The 2:1 Clay Minerals -- 6.4. The Vibrational Modes of the Tetrahedral and Octahedral Sheets in the Low-Wavenumber Region -- 6.4.1. The 1:1 Clay Minerals -- 6.4.1.1. The Kaolin Group Minerals -- 6.4.1.2. The Serpentine Group Minerals -- 6.4.2. The 2:1 Clay Minerals -- 6.4.2.1. Talc and Pyrophyllite -- 6.4.2.2. Smectites -- 6.4.2.3. Vermiculites -- 6.4.3. Palygorskite and Sepiolite -- 6.5. Concluding Remarks -- Chapter 7: Applications of NIR/MIR to Determine Site Occupancy in Smectites -- 7.1. Introduction -- 7.2. Octahedral Structures of Smectites -- 7.2.1. Di- and Tri-octahedral Structures of Smectites -- 7.2.2. Site Occupancy within a Ternary Fe-Al-Mg Field -- 7.3. Effect of Chemistry on the Presence and Position of Bands -- 7.3.1. Reduced Mass -- 7.3.2. Bond Strength (Valence) -- 7.3.3. Reduced Mass-Valence Sum -- 7.3.4. Effects of Next Nearest Neighbour Isomorphic Substitution -- 7.3.5. Ionic Radii Effects-A Generalised Approach -- 7.4. Methods to Quantify Octahedral Occupancy from IR Spectra -- 7.4.1. Band Decomposition -- 7.4.2. Spectral (Second) Derivative -- 7.4.3. Assigning Occupancies -- 7.4.4. Comparison to Random Distributions -- 7.5. Conclusions and Future Directions -- Chapter 8: Application of Vibrational Spectroscopy in Clay Minerals Synthesis -- 8.1. Introduction -- 8.2. Imogolite and Allophane -- 8.3. 1:1 Clay Minerals -- 8.3.1. Kaolinite -- 8.3.2. The Serpentine Minerals -- 8.4. 2:1 Clay Minerals -- 8.4.1. Trioctahedral Minerals -- 8.4.1.1. Talc -- 8.4.1.2. Hectorite -- 8.4.1.3. Saponite -- 8.4.2. Dioctahedral Minerals -- 8.4.2.1. Pryophyllite -- 8.4.2.2. Beidellite -- 8.4.2.3. Nontronite and Ferrian-smectite -- 8.4.2.4. Montmorillonite -- 8.5. Vermiculite -- 8.6. Chlorite -- 8.7. Concluding Remarks.
,
Chapter 9: Infrared Studies of Clay Mineral-Water Interactions -- 9.1. Introduction -- 9.2. Molecular Probes and Reporter Groups -- 9.3. Water Confined in Clay Mineral Interlayer Spaces -- 9.3.1. Smectites and Vermiculites (Ion Dipole) -- 9.3.1.1. Studies of Smectites and Vermiculites in the H2O Bending Region -- 9.3.1.2. Studies of H2O in the H2O Stretching Region for Smectites and Vermiculites -- 9.3.1.3. Vibrational Bands of the Clay Mineral that are Influenced by H2O -- 9.3.2. Nanoconfined H2O: Sepiolite and Palygorskite -- 9.3.3. Nanoconfined H2O: Halloysite and Imogolite -- 9.3.4. Physisorbed H2O -- 9.4. Clay Mineral-Water Interactions as Directors of Clay Mineral-Organic Adsorption Processes -- 9.5. Conclusions -- Chapter 10: Analysis of Organoclays and Organic Adsorption by Clay Minerals -- 10.1. Organoclay -- 10.2. Basal Spacing of Organoclay -- 10.3. FTIR of Organoclay Intercalates -- 10.3.1. FTIR Spectrum of Surfactant in Organoclay -- 10.3.2. FTIR of Clay Mineral in Organoclay -- 10.4. In Situ XRD and FTIR of Organoclay -- 10.5. FTIR of Organoclay With Adsorbed Organic Contaminants -- 10.6. Concluding Comments and a Future Outlook -- Chapter 11: Raman and Infrared Spectroscopies of Intercalated Kaolinite Groups Minerals -- 11.1. Introduction -- 11.2. Group A Molecules -- 11.2.1. Hydrazine -- 11.2.1.1. Intercalation of Hydrazine in Kaol -- 11.2.1.2. Deintercalation of Hydrazine from Kaol -- 11.2.2. Urea -- 11.2.2.1. Intercalation of Urea in Kaolinite -- 11.2.2.2. Intercalation of Urea in Halloysite -- 11.2.2.3. Deintercalation of Urea from Halloysite and from Kaol -- 11.2.3. Formamide -- 11.2.3.1. Raman Non-coincidence -- 11.2.3.2. Intercalation of Formamide in Kaol -- 11.2.3.3. Deintercalation of Formamide from Kaol -- 11.2.4. Acetamide -- 11.2.4.1. Intercalation of Acetamide in Kaol -- 11.3. Group B Molecules.
,
11.3.1. Dimethylsulphoxide, (CH3)2SO (DMSO) and Dimethylselenoxide, (CH3)2SeO (DMSeO) -- 11.3.1.1. Intercalation of DMSO and DMSeO in Kaol -- 11.3.1.2. Deintercalation of DMSO from Kaol -- 11.4. Group C Molecules -- 11.4.1. Potassium Acetate -- 11.4.1.1. Intercalation of KAc in Kaol -- 11.4.1.2. Deintercalation of KAc from Kaol -- 11.4.2. Caesium Acetate -- 11.5. Concluding Remarks -- Chapter 12: Infrared and Raman Spectroscopies of Pillared Clays -- 12.1. Introduction -- 12.2. Oligomers Salts -- 12.2.1. Al13-Sulfate and Al13 Nitrate -- 12.2.2. Ga13-Sulfate and Fe13-Sulfate -- 12.2.3. Mixed (Al-Fe)13-Sulfate, (Al-Cr)13-Sulfate and (Al-Mn)13 Sulfate -- 12.3. Al PILC -- 12.3.1. Al13 Pillared Smectites with Tetrahedral Substitutions -- 12.3.1.1. Al13-Pillared Beidellite -- 12.3.1.2. Al13-Pillared Sap -- 12.3.2. Al13 Pillared Smectites with Octahedral Substitutions -- 12.3.2.1. Al13-Pillared Ht -- 12.3.2.2. Al13-Pillared Mt and Al13-Pillared Acid Activated Mt -- 12.4. Mixed (Al-Metal)13 PILC -- 12.4.1. (Al-Fe)13-PILC -- 12.4.2. (Al-Cr)13-PILC -- 12.4.3. (Al-Zr)13-PILC -- 12.4.4. (Al-Co)-PILC -- 12.4.5. (Al-REE)-PILC -- 12.5. Ti PILC and Mixed (Ti-Metal) PILC -- 12.5.1. Ti-PMt -- 12.5.2. Mixed (Ti-Metal) PILC -- 12.5.3. Impregnated Ti-Metal-PILC -- 12.5.3.1. Palladium (Pd)- and Chromium (Cr)-Impregnated Ti-Zr PILC -- 12.5.3.2. Vanadium-Impregnated Ti PILC -- 12.6. Fe-PILC and Mixed (Fe-Metal) PILC -- 12.6.1. Fe-PILC -- 12.6.2. Mixed (Fe-Metal) PILC and Modified Fe-PILC -- 12.7. Si-PILC and Derived Materials -- 12.7.1. Hybrid Mesostructured Si-PILC -- 12.7.2. Phospho-Tungstate Functionalized Si-PILC -- 12.7.3. Titanium Functionalized Si PILC -- 12.7.4. Iron Functionalized Si PILC -- 12.7.5. Nickel and Cobalt Doped Si PILC -- 12.7.6. Si-Zr-Porous Clay Heterostructures -- 12.7.7. Tungsten Impregnated Mixed Si-Zr-PILC -- 12.8. Zr-PILC.
,
12.8.1. Humic Acid Impregnated Zr PILC.
Sprache:
Englisch
Bookmarklink