Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
Fachgebiete(RVK)
Schlagwörter
  • 1
    Online-Ressource
    Online-Ressource
    Amsterdam, [Netherlands] :Elsevier,
    UID:
    almafu_9960074144902883
    Umfang: 1 online resource (226 pages) : , illustrations, tables.
    Serie: Woodhead Publishing Series in Biomaterials
    Anmerkung: Front Cover -- Monitoring and Evaluation of Biomaterialsand their Performance In Vivo -- Related titles -- Monitoring and Evaluation of Biomaterials and their Performance In Vivo -- Copyright -- Contents -- List of contributors -- One - Monitoring and evaluationof the mechanical performance of biomaterials in vivo -- 1 - Nanostructured ceramics -- 1.1 Introduction -- 1.2 Test methods for nanostructured ceramics -- 1.2.1 Micro/nanostructural evaluation -- 1.3 Nanostructured bioceramics -- 1.3.1 Low-temperature chemical bonding -- 1.3.2 Why nanostructures in chemically bonded ceramics? -- 1.3.3 Nanostructures in the Ca aluminate-Ca phosphate system -- 1.4 Application field of nanostructured bioceramics -- 1.4.1 Dental applications including coating products -- 1.4.2 Orthopedic applications -- 1.4.3 Drug delivery carrier applications -- 1.5 Conclusion and summary -- Acknowledgments -- References -- 2 - Monitoring degradation products and metal ions in vivo -- 2.1 Introduction -- 2.2 Biodegradable metals: state of the art -- 2.2.1 The metals and their alloys -- 2.2.2 The temporary functional implants -- 2.2.3 The in vivo degradation -- 2.3 In vivo implantation study of biodegradable metals -- 2.4 Current in vivo techniques for monitoring degradation -- 2.4.1 Radiography -- 2.4.2 Ultrasonography -- 2.4.3 Microcomputed tomography -- 2.4.4 Magnetic resonance imaging -- 2.4.5 Blood evaluation -- 2.4.6 Histological analysis -- 2.5 Proposed new in vivo monitoring techniques -- 2.5.1 Monitoring local changes surrounding an implantation site -- 2.5.2 Monitoring systemic changes in body fluid -- 2.5.3 Off-clinic point-of-care implant monitoring -- 2.6 Conclusion -- Acknowledgments -- References -- two - Monitoring and evaluationof the biological responseto biomaterials in vivo -- 3 - Imaging biomaterial-associated inflammation -- 3.1 Introduction. , 3.2 Near-infrared fluorescence imaging -- 3.2.1 Inflammatory cell imaging -- 3.2.2 Macromolecular protein imaging -- 3.2.3 Small molecule imaging -- 3.3 Chemiluminescence imaging -- 3.4 Bioluminescence imaging -- 3.5 Magnetic resonance imaging -- 3.6 Conclusions and future perspectives -- References -- 4 - Monitoring fibrous capsule formation -- 4.1 Introduction -- 4.2 Functions -- 4.3 Structure -- 4.4 Joint classification -- 4.5 Fibrous capsule formation -- 4.6 Diameters of single-polymer fibers and tissue response -- 4.7 Monitor capsule formation around soft tissue -- 4.7.1 Strain gauges -- 4.8 Glucose monitoring in vivo through fluorescent hydrogel fibers -- 4.9 Cellular and molecular composition of fibrous capsules formed around silicone breast implants -- 4.10 Capsular contracture after two-stage breast reconstruction -- 4.11 Graphene-based biosensor for future perspectives -- References -- 5 - Monitoring biomineralization of biomaterials in vivo -- 5.1 Introduction -- 5.2 Biomineralization -- 5.3 Disruption to the biomineralization process and tissue engineering -- 5.4 Biomaterials for the repair of mineralized tissue -- 5.5 In vitro characterization of biomineralization -- 5.5.1 Histology -- 5.5.2 Microradiography -- 5.5.3 Fluorescent microscopy -- 5.5.4 Infrared spectrometry and Raman spectroscopy -- 5.5.5 X-ray diffraction -- 5.5.6 Transmission and scanning electron microscopy -- 5.5.7 Energy dispersive X-ray spectrometry and electron energy-loss spectroscopy -- 5.5.8 Atomic force microscopy -- 5.5.9 Atom probe tomography -- 5.6 In vivo characterization of biomineralization -- 5.6.1 Radiography -- 5.6.2 Ultrasound -- 5.6.3 Positron emission tomography -- 5.6.4 X-ray computed tomography -- 5.6.5 Magnetic resonance imaging -- 5.6.6 Optical coherence tomography -- 5.6.7 Fluorescent imaging -- 5.6.8 Raman spectroscopy. , 5.6.9 Multiphoton imaging -- 5.7 Future trends -- 5.8 Conclusions -- References -- 6 - Measuring gene expression changes on biomaterial surfaces -- 6.1 Introduction -- 6.1.1 Measuring global gene expression -- 6.1.2 Measuring specific gene expression patterns -- 6.1.3 Localizing the expression of genes of interests -- 6.2 Considerations when measuring gene expression -- 6.2.1 Assumptions underlying mRNA analysis -- 6.2.2 Gene expression versus protein expression -- 6.2.2.1 Alternate RNA splicing -- 6.2.2.2 Posttranslational modifications -- 6.3 Using gene expression for analysis of cell response to biomaterials -- 6.3.1 Example 1: influence of biomaterials on osteogenic gene expression and mineralization in hPDL cells -- 6.3.1.1 Choosing an appropriate cell model -- 6.3.1.2 Experimental design -- 6.3.1.3 Gene expression analysis -- Transcriptional genes -- Extracellular matrix and mineralization markers -- Genes not associated with osteogenesis -- 6.4 Gene expression in a context of skin healing -- 6.4.1 The skin repair process and the three phases of wound healing -- 6.4.1.1 Inflammatory phase -- 6.4.1.2 Proliferative phase -- 6.4.1.3 Remodeling phase -- 6.4.2 Biomaterials and their effect on wound healing: a practical example -- 6.4.2.1 Methods for in vivo gene expression analysis -- In situ hybridization and inflammation -- Proliferative phase and microarrays -- Remodeling phase of healing and RT-qPCR -- 6.5 Future trends/conclusions -- References -- Three - Monitoring and evaluation of functional biomaterial performance in vivo -- 7 - Monitoring and tracking metallic nanobiomaterials in vivo -- 7.1 Metallic nanobiomaterials -- 7.1.1 Gold nanoparticles -- 7.1.2 Magnetic iron oxide nanoparticles -- 7.2 Metallic nanobiomaterials for monitoring and tracking in vivo -- 7.2.1 Tracking cellular regeneration. , 7.2.2 Biodistribution monitoring of metallic nanobiomaterials to target tissue -- 7.2.3 Metallic nanobiomaterials for monitoring inflamed tissue -- 7.3 Biodistribution and elimination of metallic nanobiomaterials -- 7.3.1 Biodistribution and elimination of gold nanoparticles in vivo -- 7.3.2 Biodistribution and elimination of magnetic iron oxide nanoparticles in vivo -- 7.4 Conclusion -- Acknowledgments -- References -- 8 - High-resolution imaging techniques in tissue engineering -- 8.1 Introduction -- 8.2 Phase contrast microscopy -- 8.2.1 General -- 8.2.2 Quantitative phase imaging -- 8.3 Confocal microscopy -- 8.3.1 General -- 8.3.2 Confocal reflectance microscopy -- 8.3.3 Confocal florescence microscopy -- 8.4 Multiphoton microscopy -- 8.4.1 General -- 8.4.2 Two-photon fluorescence microscopy -- 8.4.3 Second harmonic generation microscopy -- 8.5 Optical coherence tomography -- 8.5.1 General -- 8.5.2 Structural imaging -- 8.5.3 Polarization sensitive OCT -- 8.5.4 Optical coherence elastography -- 8.5.5 Doppler optical coherence tomography -- 8.5.6 Speckle variance optical coherence tomography -- 8.6 Photoacoustic microscopy -- 8.6.1 General -- 8.6.2 Acoustic resolution photoacoustic microscopy -- 8.6.3 Optical resolution photoacoustic microscopy -- 8.7 Raman spectroscopy -- 8.7.1 General -- 8.7.2 Cell analysis with Raman spectroscopy -- 8.7.3 Biomaterial analysis with Raman spectroscopy -- 8.8 Multimodality imaging -- 8.9 Perspectives -- 8.10 Conclusions -- Acknowledgments -- References -- 9 - Magnetic resonance imaging monitoring of cartilage tissue engineering in vivo -- 9.1 Introduction -- 9.2 Cartilage -- 9.3 Cartilage tissue engineering -- 9.3.1 Cells -- 9.3.2 Scaffold -- 9.3.3 Signaling molecules and growth factors -- 9.3.4 Growth conditions -- 9.4 Animal models in cartilage tissue engineering -- 9.5 Tissue assessment. , 9.6 Magnetic resonance imaging -- 9.7 Magnetic resonance imaging assessment of tissue-engineering cartilage in vivo -- 9.8 Future directions -- References -- 10 - Noninvasive optical imaging of stem cell differentiation in biomaterials using photonic crystal surfaces -- 10.1 Introduction -- 10.2 Motivation for noninvasive optical imaging of stem cells in vitro: adhesion phenotyping of stem cell differentiation -- 10.2.1 Material-based approaches to regulate stem cell fate decisions in vitro -- 10.2.2 Challenges associated with in vitro control of stem cell fate decisions -- 10.2.3 Adhesion phenotyping of stem cells -- 10.2.4 Noninvasive optical imaging as a potential new tool of stem cell characterization -- 10.3 History: optical imaging of cells using photonic crystal enhanced microscopy (PCEM) -- 10.3.1 Basic principles of PCEM -- 10.3.2 Optical imaging of live cells using PCEM (Cunningham group publications) -- 10.4 PCEM imaging of stem cell differentiation -- 10.5 Conclusions and future outlook -- Acknowledgments -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- X -- Z -- Back Cover.
    Weitere Ausg.: ISBN 9780081006030
    Weitere Ausg.: ISBN 0081006039
    Weitere Ausg.: ISBN 9780081006047
    Weitere Ausg.: ISBN 0081006047
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Buch
    Buch
    Amsterdam : Woodhead Publishing is an imprint of Elsevier
    UID:
    b3kat_BV045209762
    Umfang: x, 213 Seiten , Illustrationen
    ISBN: 9780081006030 , 0081006039
    Serie: Woodhead Publishing series in biomaterials
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 978-0-08-100604-7
    Sprache: Englisch
    Fachgebiete: Technik
    RVK:
    Schlagwort(e): Biomaterial ; Biokompatibilität
    Mehr zum Autor: Narayan, Roger
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780081000632?
Meinten Sie 9780081000670?
Meinten Sie 9780081000830?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz