Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Oxford, England ; : Butterworth-Heineman,
    UID:
    almahu_9949698046002882
    Format: 1 online resource (422 pages) : , illustrations
    Edition: 2nd ed.
    ISBN: 0-08-101234-9
    Note: Includes index. , Front Cover -- Power Systems Analysis -- Copyright Page -- Dedication -- Contents -- Preface -- 1 Introduction -- 1.1 The Electrical Power System -- 1.2 Network Models -- 1.3 Faults and Analysis -- 1.4 The Primitive Network -- 1.5 Power System Stability -- 1.6 Deregulation -- 1.7 Renewable Energy Resources -- 2 Graph Theory -- 2.1 Introduction -- 2.2 Definitions -- 2.3 Tree and Cotree -- 2.4 Basic Loops -- 2.5 Cut-Set -- 2.6 Basic Cut-Sets -- Worked Examples -- Problems -- Questions -- 3 Incidence Matrices -- 3.1 Element-Node Incidence Matrix -- 3.2 Bus Incidence Matrix -- 3.3 Branch-Path Incidence Matrix K -- 3.4 Basic Cut-Set Incidence Matrix -- 3.5 Augmented Cut-Set Incidence Matrix B̃ -- 3.6 Basic Loop Incidence Matrix -- 3.7 Augmented Loop Incidence Matrix -- 3.8 Network Performance Equations -- Worked Examples -- Questions -- Problems -- 4 Network Matrices -- 4.1 Introduction -- 4.2 Network Matrices -- 4.2.1 Network Matrices by Singular Transformations -- 4.2.1.1 Bus Admittance Matrix and Bus Impedance Matrix -- 4.2.1.2 Branch Admittance and Branch Impedance Matrices -- 4.2.1.3 Loop Impedance and Loop Admittance Matrices -- 4.2.2 Network Matrices by Nonsingular Transformation -- 4.2.2.1 Branch Admittance Matrix -- 4.2.2.2 Loop Impedance and Loop Admittance Matrices -- 4.3 Bus Admittance Matrix by Direct Inspection -- Worked Examples -- Questions -- Problems -- 5 Building of Network Matrices -- 5.1 Introduction -- 5.2 Partial Network -- 5.3 Addition of a Branch -- 5.3.1 Calculation of Mutual Impedances -- 5.3.2 Calculation of Self-Impedance of Added Branch Zab -- 5.3.3 Special Cases -- 5.4 Addition of a Link -- 5.4.1 Calculation of Mutual Impedances -- 5.4.2 Computation of Self-Impedance -- 5.4.3 Removal of Elements or Changes in Element -- 5.5 Removal or Change in Impedance of Elements with Mutual Impedance -- Worked Examples -- Problems. , Questions -- 6 Symmetrical Components -- 6.1 The Operator "a" -- 6.2 Symmetrical Components of Unsymmetrical Phases -- 6.3 Power in Sequence Components -- 6.4 Unitary Transformation for Power Invariance -- 7 Three-Phase Networks -- 7.1 Three-Phase Network Element Representation -- 7.1.1 Stationary Network Element -- 7.1.2 Rotating Network Element -- 7.1.3 Performance Relations for Primitive Three-Phase Network Element -- 7.2 Three-Phase Balanced Network Elements -- 7.2.1 Balanced Excitation -- 7.2.2 Transformation Matrices -- 7.3 Three-Phase Impedance Networks -- 7.3.1 Incidence and Network Matrices for Three-Phase Networks -- 7.3.2 Algorithm for Three-Phase Bus Impedance Matrix -- 7.3.2.1 Performance Equation of a Partial Three-Phase Network -- 7.3.2.2 Addition of a Branch -- 7.3.2.3 Addition of a Link -- Summary of the Formulae -- Worked Examples -- Questions -- Problems -- 8 Synchronous Machine -- 8.1 The Two-Axis Model of Synchronous Machine -- 8.2 Derivation of Park's Two-Axis Model -- 8.3 Synchronous Machine Analysis -- 8.3.1 Voltage Relations-Stator or Armature -- 8.3.1.1 Field or Rotor -- 8.3.1.2 Direct Axis Damper Windings -- 8.3.1.3 Quadrature Axis Damper Windings -- 8.3.2 Flux Linkage Relations -- 8.3.2.1 Armature -- 8.3.2.2 Field -- 8.3.2.3 Direct Axis Damper Winding -- 8.3.2.4 Quadrature Axis Damper Winding -- 8.3.3 Inductance Relations -- 8.3.3.1 Self-Inductance of the Armature Windings -- 8.3.3.2 Mutual Inductances of the Armature Windings -- 8.3.3.3 Mutual Inductances Between Stator and Rotor Flux -- 8.3.4 Flux Linkage Equations -- 8.3.4.1 Field -- 8.3.4.2 Direct Axis Damper Winding -- 8.3.4.3 Quadrature Axis Damper Winding -- 8.4 The Transformations -- 8.5 Stator Voltage Equations -- 8.6 Steady-State Equation -- 8.7 Steady-State Vector Diagram -- 8.8 Reactances -- 8.9 Equivalent Circuits and Phasor Diagrams. , 8.9.1 Model for Transient Stability -- 8.10 Transient State Phasor Diagram -- 8.11 Power Relations -- 8.12 Synchronous Machine Connected Through an External Reactance -- Worked Examples -- Questions -- Problems -- 9 Lines and Loads -- 9.1 Lines -- 9.1.1 Short Lines -- 9.1.2 Medium Lines -- 9.1.3 Long Lines -- 9.2 Transformers -- 9.2.1 Transformer with Nominal Turns Ratio -- 9.2.2 Phase Shifting Transformers -- 9.3 Load Modeling -- 9.3.1 Constant Current Model -- 9.3.2 Constant Impedance Model -- 9.3.3 Constant Power Model -- 9.4 Composite Load -- 9.4.1 Dynamic Characteristics -- 9.5 Induction Machine Modeling -- 9.6 Model with Mechanical Transients -- 9.6.1 Power Torque and Slip -- 9.6.2 Reactive Power and Slip -- 9.6.3 Synchronous Motor -- 9.7 Rectifiers and Inverter Loads -- 9.7.1 Static Load Modeling for Load Flow Studies -- 9.7.2 Voltage Dependence of Equivalent Loads -- 9.7.3 Derivation for Equivalent Load Powers -- Worked Examples -- Questions -- Problems -- 10 Power Flow Studies -- 10.1 Necessity for Power Flow Studies -- 10.2 Conditions for Successful Operation of a Power System -- 10.3 The Power Flow Equations -- 10.4 Classification of Buses -- 10.5 Bus Admittance Formation -- 10.6 System Model for Load Flow Studies -- 10.7 Gauss-Seidel Method -- 10.8 Gauss-Seidel Iterative Method -- 10.8.1 Acceleration Factor -- 10.8.2 Treatment of a PV Bus -- 10.9 Newton-Raphson Method -- 10.9.1 Rectangular Coordinates Method -- 10.9.2 The Polar Coordinates Method -- 10.10 Sparsity of Network Admittance Matrices -- 10.11 Triangular Decomposition -- 10.12 Optimal Ordering -- 10.13 Decoupled Methods -- 10.14 Fast Decoupled Methods -- 10.15 Load Flow Solution Using Z-Bus -- 10.15.1 Bus Impedance Formation -- 10.15.2 Addition of a Line to the Reference Bus -- 10.15.3 Addition of a Radial Line and New Bus. , 10.15.4 Addition of a Loop Closing Two Existing Buses in the System -- 10.15.5 Gauss-Seidel Method Using Z-Bus for Load Flow Solution -- 10.16 Convergence Characteristics -- 10.17 Comparison of Various Methods for Power Flow Solution -- Worked Examples -- Problems -- Questions -- 11 Short Circuit Analysis -- 11.1 Per Unit Quantities -- 11.2 Advantages of Per Unit System -- 11.3 Three-Phase Short Circuits -- 11.4 Reactance Diagrams -- 11.5 Percentage Values -- 11.6 Short Circuit kVA -- 11.7 Importance of Short Circuit Currents -- 11.8 Analysis of R-L Circuit -- 11.9 Three-Phase Short Circuit on Unloaded Synchronous Generator -- 11.10 Effect of Load Current or Prefault Current -- 11.11 Reactors -- 11.11.1 Construction of Reactors -- 11.11.2 Classification of Reactors -- Worked Examples -- Problems -- Questions -- 12 Unbalanced Fault Analysis -- 12.1 Sequence Impedances -- 12.2 Balanced Star Connected Load -- 12.3 Transmission Lines -- 12.4 Sequence Impedances of Transformer -- 12.5 Sequence Reactances of Synchronous Machine -- 12.6 Sequence Networks of Synchronous Machines -- 12.6.1 Positive Sequence Network -- 12.6.2 Negative Sequence Network -- 12.6.3 Zero Sequence Network -- 12.7 Unsymmetrical Faults -- 12.8 Assumptions for System Representation -- 12.9 Unsymmetrical Faults on an Unloaded Generator -- 12.10 Line-to-Line Fault -- 12.11 Double Line-to-Ground Fault -- 12.12 Single Line-to-Ground Fault with Fault Impedance -- 12.13 Line-to-Line Fault with Fault Impedance -- 12.14 Double Line-to-Ground Fault With Fault Impedance -- Worked Examples -- Problems -- Questions -- 13 Power System Stability -- 13.1 Elementary Concepts -- 13.2 Illustration of Steady State Stability Concept -- 13.3 Methods for Improcessing Steady State Stability Limit -- 13.4 Synchronizing Power Coefficient -- 13.5 Short Circuit Ratio and Excitation System. , 13.6 Transient Stability -- 13.7 Stability of a Single Machine Connected to Infinite Bus -- 13.8 The Swing Equation -- 13.9 Equal Area Criterion and Swing Equation -- 13.10 Transient Stability Limit -- 13.11 Frequency of Oscillations -- 13.12 Critical Clearing Time and Critical Clearing Angle -- 13.13 Fault on a Double-Circuit Line -- 13.14 Transient Stability When Power Is Transmitted During the Fault -- 13.15 Fault Clearance and Reclosure in Double-Circuit System -- 13.16 First Swing Stability -- 13.17 Solution to Swing Equation Step-by-Step Method -- 13.18 Factors Affecting Transient Stability -- 13.18.1 Effect of Voltage Regulator -- 13.19 Excitation System and the Stability Problem -- 13.20 Dynamic Stability -- 13.20.1 Power System Stabilizer -- 13.21 Small Disturbance Analysis -- 13.22 Node Elimination Methods -- 13.23 Other Methods for Solution of Swing Equation -- 13.23.1 Modified Euler's Method -- Worked Examples -- Problems -- Questions -- Index -- Back Cover.
    Additional Edition: ISBN 0-08-101111-3
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Book
    Book
    Oxford : Elsevier, Butterworth-Heinemann
    UID:
    b3kat_BV044558131
    Format: xiii, 406 Seiten , Diagramme
    Edition: Second edition
    ISBN: 9780081011119
    Additional Edition: Erscheint auch als Online-Ausgabe ISBN 978-0-08-101234-5
    Language: English
    Subjects: Engineering
    RVK:
    Keywords: Elektrische Energietechnik ; Elektrizitätsversorgungsnetz ; Netzwerkanalyse ; Systemanalyse
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford, England ; : Butterworth-Heineman,
    UID:
    edoccha_9960161367202883
    Format: 1 online resource (422 pages) : , illustrations
    Edition: 2nd ed.
    ISBN: 0-08-101234-9
    Note: Includes index. , Front Cover -- Power Systems Analysis -- Copyright Page -- Dedication -- Contents -- Preface -- 1 Introduction -- 1.1 The Electrical Power System -- 1.2 Network Models -- 1.3 Faults and Analysis -- 1.4 The Primitive Network -- 1.5 Power System Stability -- 1.6 Deregulation -- 1.7 Renewable Energy Resources -- 2 Graph Theory -- 2.1 Introduction -- 2.2 Definitions -- 2.3 Tree and Cotree -- 2.4 Basic Loops -- 2.5 Cut-Set -- 2.6 Basic Cut-Sets -- Worked Examples -- Problems -- Questions -- 3 Incidence Matrices -- 3.1 Element-Node Incidence Matrix -- 3.2 Bus Incidence Matrix -- 3.3 Branch-Path Incidence Matrix K -- 3.4 Basic Cut-Set Incidence Matrix -- 3.5 Augmented Cut-Set Incidence Matrix B̃ -- 3.6 Basic Loop Incidence Matrix -- 3.7 Augmented Loop Incidence Matrix -- 3.8 Network Performance Equations -- Worked Examples -- Questions -- Problems -- 4 Network Matrices -- 4.1 Introduction -- 4.2 Network Matrices -- 4.2.1 Network Matrices by Singular Transformations -- 4.2.1.1 Bus Admittance Matrix and Bus Impedance Matrix -- 4.2.1.2 Branch Admittance and Branch Impedance Matrices -- 4.2.1.3 Loop Impedance and Loop Admittance Matrices -- 4.2.2 Network Matrices by Nonsingular Transformation -- 4.2.2.1 Branch Admittance Matrix -- 4.2.2.2 Loop Impedance and Loop Admittance Matrices -- 4.3 Bus Admittance Matrix by Direct Inspection -- Worked Examples -- Questions -- Problems -- 5 Building of Network Matrices -- 5.1 Introduction -- 5.2 Partial Network -- 5.3 Addition of a Branch -- 5.3.1 Calculation of Mutual Impedances -- 5.3.2 Calculation of Self-Impedance of Added Branch Zab -- 5.3.3 Special Cases -- 5.4 Addition of a Link -- 5.4.1 Calculation of Mutual Impedances -- 5.4.2 Computation of Self-Impedance -- 5.4.3 Removal of Elements or Changes in Element -- 5.5 Removal or Change in Impedance of Elements with Mutual Impedance -- Worked Examples -- Problems. , Questions -- 6 Symmetrical Components -- 6.1 The Operator "a" -- 6.2 Symmetrical Components of Unsymmetrical Phases -- 6.3 Power in Sequence Components -- 6.4 Unitary Transformation for Power Invariance -- 7 Three-Phase Networks -- 7.1 Three-Phase Network Element Representation -- 7.1.1 Stationary Network Element -- 7.1.2 Rotating Network Element -- 7.1.3 Performance Relations for Primitive Three-Phase Network Element -- 7.2 Three-Phase Balanced Network Elements -- 7.2.1 Balanced Excitation -- 7.2.2 Transformation Matrices -- 7.3 Three-Phase Impedance Networks -- 7.3.1 Incidence and Network Matrices for Three-Phase Networks -- 7.3.2 Algorithm for Three-Phase Bus Impedance Matrix -- 7.3.2.1 Performance Equation of a Partial Three-Phase Network -- 7.3.2.2 Addition of a Branch -- 7.3.2.3 Addition of a Link -- Summary of the Formulae -- Worked Examples -- Questions -- Problems -- 8 Synchronous Machine -- 8.1 The Two-Axis Model of Synchronous Machine -- 8.2 Derivation of Park's Two-Axis Model -- 8.3 Synchronous Machine Analysis -- 8.3.1 Voltage Relations-Stator or Armature -- 8.3.1.1 Field or Rotor -- 8.3.1.2 Direct Axis Damper Windings -- 8.3.1.3 Quadrature Axis Damper Windings -- 8.3.2 Flux Linkage Relations -- 8.3.2.1 Armature -- 8.3.2.2 Field -- 8.3.2.3 Direct Axis Damper Winding -- 8.3.2.4 Quadrature Axis Damper Winding -- 8.3.3 Inductance Relations -- 8.3.3.1 Self-Inductance of the Armature Windings -- 8.3.3.2 Mutual Inductances of the Armature Windings -- 8.3.3.3 Mutual Inductances Between Stator and Rotor Flux -- 8.3.4 Flux Linkage Equations -- 8.3.4.1 Field -- 8.3.4.2 Direct Axis Damper Winding -- 8.3.4.3 Quadrature Axis Damper Winding -- 8.4 The Transformations -- 8.5 Stator Voltage Equations -- 8.6 Steady-State Equation -- 8.7 Steady-State Vector Diagram -- 8.8 Reactances -- 8.9 Equivalent Circuits and Phasor Diagrams. , 8.9.1 Model for Transient Stability -- 8.10 Transient State Phasor Diagram -- 8.11 Power Relations -- 8.12 Synchronous Machine Connected Through an External Reactance -- Worked Examples -- Questions -- Problems -- 9 Lines and Loads -- 9.1 Lines -- 9.1.1 Short Lines -- 9.1.2 Medium Lines -- 9.1.3 Long Lines -- 9.2 Transformers -- 9.2.1 Transformer with Nominal Turns Ratio -- 9.2.2 Phase Shifting Transformers -- 9.3 Load Modeling -- 9.3.1 Constant Current Model -- 9.3.2 Constant Impedance Model -- 9.3.3 Constant Power Model -- 9.4 Composite Load -- 9.4.1 Dynamic Characteristics -- 9.5 Induction Machine Modeling -- 9.6 Model with Mechanical Transients -- 9.6.1 Power Torque and Slip -- 9.6.2 Reactive Power and Slip -- 9.6.3 Synchronous Motor -- 9.7 Rectifiers and Inverter Loads -- 9.7.1 Static Load Modeling for Load Flow Studies -- 9.7.2 Voltage Dependence of Equivalent Loads -- 9.7.3 Derivation for Equivalent Load Powers -- Worked Examples -- Questions -- Problems -- 10 Power Flow Studies -- 10.1 Necessity for Power Flow Studies -- 10.2 Conditions for Successful Operation of a Power System -- 10.3 The Power Flow Equations -- 10.4 Classification of Buses -- 10.5 Bus Admittance Formation -- 10.6 System Model for Load Flow Studies -- 10.7 Gauss-Seidel Method -- 10.8 Gauss-Seidel Iterative Method -- 10.8.1 Acceleration Factor -- 10.8.2 Treatment of a PV Bus -- 10.9 Newton-Raphson Method -- 10.9.1 Rectangular Coordinates Method -- 10.9.2 The Polar Coordinates Method -- 10.10 Sparsity of Network Admittance Matrices -- 10.11 Triangular Decomposition -- 10.12 Optimal Ordering -- 10.13 Decoupled Methods -- 10.14 Fast Decoupled Methods -- 10.15 Load Flow Solution Using Z-Bus -- 10.15.1 Bus Impedance Formation -- 10.15.2 Addition of a Line to the Reference Bus -- 10.15.3 Addition of a Radial Line and New Bus. , 10.15.4 Addition of a Loop Closing Two Existing Buses in the System -- 10.15.5 Gauss-Seidel Method Using Z-Bus for Load Flow Solution -- 10.16 Convergence Characteristics -- 10.17 Comparison of Various Methods for Power Flow Solution -- Worked Examples -- Problems -- Questions -- 11 Short Circuit Analysis -- 11.1 Per Unit Quantities -- 11.2 Advantages of Per Unit System -- 11.3 Three-Phase Short Circuits -- 11.4 Reactance Diagrams -- 11.5 Percentage Values -- 11.6 Short Circuit kVA -- 11.7 Importance of Short Circuit Currents -- 11.8 Analysis of R-L Circuit -- 11.9 Three-Phase Short Circuit on Unloaded Synchronous Generator -- 11.10 Effect of Load Current or Prefault Current -- 11.11 Reactors -- 11.11.1 Construction of Reactors -- 11.11.2 Classification of Reactors -- Worked Examples -- Problems -- Questions -- 12 Unbalanced Fault Analysis -- 12.1 Sequence Impedances -- 12.2 Balanced Star Connected Load -- 12.3 Transmission Lines -- 12.4 Sequence Impedances of Transformer -- 12.5 Sequence Reactances of Synchronous Machine -- 12.6 Sequence Networks of Synchronous Machines -- 12.6.1 Positive Sequence Network -- 12.6.2 Negative Sequence Network -- 12.6.3 Zero Sequence Network -- 12.7 Unsymmetrical Faults -- 12.8 Assumptions for System Representation -- 12.9 Unsymmetrical Faults on an Unloaded Generator -- 12.10 Line-to-Line Fault -- 12.11 Double Line-to-Ground Fault -- 12.12 Single Line-to-Ground Fault with Fault Impedance -- 12.13 Line-to-Line Fault with Fault Impedance -- 12.14 Double Line-to-Ground Fault With Fault Impedance -- Worked Examples -- Problems -- Questions -- 13 Power System Stability -- 13.1 Elementary Concepts -- 13.2 Illustration of Steady State Stability Concept -- 13.3 Methods for Improcessing Steady State Stability Limit -- 13.4 Synchronizing Power Coefficient -- 13.5 Short Circuit Ratio and Excitation System. , 13.6 Transient Stability -- 13.7 Stability of a Single Machine Connected to Infinite Bus -- 13.8 The Swing Equation -- 13.9 Equal Area Criterion and Swing Equation -- 13.10 Transient Stability Limit -- 13.11 Frequency of Oscillations -- 13.12 Critical Clearing Time and Critical Clearing Angle -- 13.13 Fault on a Double-Circuit Line -- 13.14 Transient Stability When Power Is Transmitted During the Fault -- 13.15 Fault Clearance and Reclosure in Double-Circuit System -- 13.16 First Swing Stability -- 13.17 Solution to Swing Equation Step-by-Step Method -- 13.18 Factors Affecting Transient Stability -- 13.18.1 Effect of Voltage Regulator -- 13.19 Excitation System and the Stability Problem -- 13.20 Dynamic Stability -- 13.20.1 Power System Stabilizer -- 13.21 Small Disturbance Analysis -- 13.22 Node Elimination Methods -- 13.23 Other Methods for Solution of Swing Equation -- 13.23.1 Modified Euler's Method -- Worked Examples -- Problems -- Questions -- Index -- Back Cover.
    Additional Edition: ISBN 0-08-101111-3
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford, England ; : Butterworth-Heineman,
    UID:
    edocfu_9960161367202883
    Format: 1 online resource (422 pages) : , illustrations
    Edition: 2nd ed.
    ISBN: 0-08-101234-9
    Note: Includes index. , Front Cover -- Power Systems Analysis -- Copyright Page -- Dedication -- Contents -- Preface -- 1 Introduction -- 1.1 The Electrical Power System -- 1.2 Network Models -- 1.3 Faults and Analysis -- 1.4 The Primitive Network -- 1.5 Power System Stability -- 1.6 Deregulation -- 1.7 Renewable Energy Resources -- 2 Graph Theory -- 2.1 Introduction -- 2.2 Definitions -- 2.3 Tree and Cotree -- 2.4 Basic Loops -- 2.5 Cut-Set -- 2.6 Basic Cut-Sets -- Worked Examples -- Problems -- Questions -- 3 Incidence Matrices -- 3.1 Element-Node Incidence Matrix -- 3.2 Bus Incidence Matrix -- 3.3 Branch-Path Incidence Matrix K -- 3.4 Basic Cut-Set Incidence Matrix -- 3.5 Augmented Cut-Set Incidence Matrix B̃ -- 3.6 Basic Loop Incidence Matrix -- 3.7 Augmented Loop Incidence Matrix -- 3.8 Network Performance Equations -- Worked Examples -- Questions -- Problems -- 4 Network Matrices -- 4.1 Introduction -- 4.2 Network Matrices -- 4.2.1 Network Matrices by Singular Transformations -- 4.2.1.1 Bus Admittance Matrix and Bus Impedance Matrix -- 4.2.1.2 Branch Admittance and Branch Impedance Matrices -- 4.2.1.3 Loop Impedance and Loop Admittance Matrices -- 4.2.2 Network Matrices by Nonsingular Transformation -- 4.2.2.1 Branch Admittance Matrix -- 4.2.2.2 Loop Impedance and Loop Admittance Matrices -- 4.3 Bus Admittance Matrix by Direct Inspection -- Worked Examples -- Questions -- Problems -- 5 Building of Network Matrices -- 5.1 Introduction -- 5.2 Partial Network -- 5.3 Addition of a Branch -- 5.3.1 Calculation of Mutual Impedances -- 5.3.2 Calculation of Self-Impedance of Added Branch Zab -- 5.3.3 Special Cases -- 5.4 Addition of a Link -- 5.4.1 Calculation of Mutual Impedances -- 5.4.2 Computation of Self-Impedance -- 5.4.3 Removal of Elements or Changes in Element -- 5.5 Removal or Change in Impedance of Elements with Mutual Impedance -- Worked Examples -- Problems. , Questions -- 6 Symmetrical Components -- 6.1 The Operator "a" -- 6.2 Symmetrical Components of Unsymmetrical Phases -- 6.3 Power in Sequence Components -- 6.4 Unitary Transformation for Power Invariance -- 7 Three-Phase Networks -- 7.1 Three-Phase Network Element Representation -- 7.1.1 Stationary Network Element -- 7.1.2 Rotating Network Element -- 7.1.3 Performance Relations for Primitive Three-Phase Network Element -- 7.2 Three-Phase Balanced Network Elements -- 7.2.1 Balanced Excitation -- 7.2.2 Transformation Matrices -- 7.3 Three-Phase Impedance Networks -- 7.3.1 Incidence and Network Matrices for Three-Phase Networks -- 7.3.2 Algorithm for Three-Phase Bus Impedance Matrix -- 7.3.2.1 Performance Equation of a Partial Three-Phase Network -- 7.3.2.2 Addition of a Branch -- 7.3.2.3 Addition of a Link -- Summary of the Formulae -- Worked Examples -- Questions -- Problems -- 8 Synchronous Machine -- 8.1 The Two-Axis Model of Synchronous Machine -- 8.2 Derivation of Park's Two-Axis Model -- 8.3 Synchronous Machine Analysis -- 8.3.1 Voltage Relations-Stator or Armature -- 8.3.1.1 Field or Rotor -- 8.3.1.2 Direct Axis Damper Windings -- 8.3.1.3 Quadrature Axis Damper Windings -- 8.3.2 Flux Linkage Relations -- 8.3.2.1 Armature -- 8.3.2.2 Field -- 8.3.2.3 Direct Axis Damper Winding -- 8.3.2.4 Quadrature Axis Damper Winding -- 8.3.3 Inductance Relations -- 8.3.3.1 Self-Inductance of the Armature Windings -- 8.3.3.2 Mutual Inductances of the Armature Windings -- 8.3.3.3 Mutual Inductances Between Stator and Rotor Flux -- 8.3.4 Flux Linkage Equations -- 8.3.4.1 Field -- 8.3.4.2 Direct Axis Damper Winding -- 8.3.4.3 Quadrature Axis Damper Winding -- 8.4 The Transformations -- 8.5 Stator Voltage Equations -- 8.6 Steady-State Equation -- 8.7 Steady-State Vector Diagram -- 8.8 Reactances -- 8.9 Equivalent Circuits and Phasor Diagrams. , 8.9.1 Model for Transient Stability -- 8.10 Transient State Phasor Diagram -- 8.11 Power Relations -- 8.12 Synchronous Machine Connected Through an External Reactance -- Worked Examples -- Questions -- Problems -- 9 Lines and Loads -- 9.1 Lines -- 9.1.1 Short Lines -- 9.1.2 Medium Lines -- 9.1.3 Long Lines -- 9.2 Transformers -- 9.2.1 Transformer with Nominal Turns Ratio -- 9.2.2 Phase Shifting Transformers -- 9.3 Load Modeling -- 9.3.1 Constant Current Model -- 9.3.2 Constant Impedance Model -- 9.3.3 Constant Power Model -- 9.4 Composite Load -- 9.4.1 Dynamic Characteristics -- 9.5 Induction Machine Modeling -- 9.6 Model with Mechanical Transients -- 9.6.1 Power Torque and Slip -- 9.6.2 Reactive Power and Slip -- 9.6.3 Synchronous Motor -- 9.7 Rectifiers and Inverter Loads -- 9.7.1 Static Load Modeling for Load Flow Studies -- 9.7.2 Voltage Dependence of Equivalent Loads -- 9.7.3 Derivation for Equivalent Load Powers -- Worked Examples -- Questions -- Problems -- 10 Power Flow Studies -- 10.1 Necessity for Power Flow Studies -- 10.2 Conditions for Successful Operation of a Power System -- 10.3 The Power Flow Equations -- 10.4 Classification of Buses -- 10.5 Bus Admittance Formation -- 10.6 System Model for Load Flow Studies -- 10.7 Gauss-Seidel Method -- 10.8 Gauss-Seidel Iterative Method -- 10.8.1 Acceleration Factor -- 10.8.2 Treatment of a PV Bus -- 10.9 Newton-Raphson Method -- 10.9.1 Rectangular Coordinates Method -- 10.9.2 The Polar Coordinates Method -- 10.10 Sparsity of Network Admittance Matrices -- 10.11 Triangular Decomposition -- 10.12 Optimal Ordering -- 10.13 Decoupled Methods -- 10.14 Fast Decoupled Methods -- 10.15 Load Flow Solution Using Z-Bus -- 10.15.1 Bus Impedance Formation -- 10.15.2 Addition of a Line to the Reference Bus -- 10.15.3 Addition of a Radial Line and New Bus. , 10.15.4 Addition of a Loop Closing Two Existing Buses in the System -- 10.15.5 Gauss-Seidel Method Using Z-Bus for Load Flow Solution -- 10.16 Convergence Characteristics -- 10.17 Comparison of Various Methods for Power Flow Solution -- Worked Examples -- Problems -- Questions -- 11 Short Circuit Analysis -- 11.1 Per Unit Quantities -- 11.2 Advantages of Per Unit System -- 11.3 Three-Phase Short Circuits -- 11.4 Reactance Diagrams -- 11.5 Percentage Values -- 11.6 Short Circuit kVA -- 11.7 Importance of Short Circuit Currents -- 11.8 Analysis of R-L Circuit -- 11.9 Three-Phase Short Circuit on Unloaded Synchronous Generator -- 11.10 Effect of Load Current or Prefault Current -- 11.11 Reactors -- 11.11.1 Construction of Reactors -- 11.11.2 Classification of Reactors -- Worked Examples -- Problems -- Questions -- 12 Unbalanced Fault Analysis -- 12.1 Sequence Impedances -- 12.2 Balanced Star Connected Load -- 12.3 Transmission Lines -- 12.4 Sequence Impedances of Transformer -- 12.5 Sequence Reactances of Synchronous Machine -- 12.6 Sequence Networks of Synchronous Machines -- 12.6.1 Positive Sequence Network -- 12.6.2 Negative Sequence Network -- 12.6.3 Zero Sequence Network -- 12.7 Unsymmetrical Faults -- 12.8 Assumptions for System Representation -- 12.9 Unsymmetrical Faults on an Unloaded Generator -- 12.10 Line-to-Line Fault -- 12.11 Double Line-to-Ground Fault -- 12.12 Single Line-to-Ground Fault with Fault Impedance -- 12.13 Line-to-Line Fault with Fault Impedance -- 12.14 Double Line-to-Ground Fault With Fault Impedance -- Worked Examples -- Problems -- Questions -- 13 Power System Stability -- 13.1 Elementary Concepts -- 13.2 Illustration of Steady State Stability Concept -- 13.3 Methods for Improcessing Steady State Stability Limit -- 13.4 Synchronizing Power Coefficient -- 13.5 Short Circuit Ratio and Excitation System. , 13.6 Transient Stability -- 13.7 Stability of a Single Machine Connected to Infinite Bus -- 13.8 The Swing Equation -- 13.9 Equal Area Criterion and Swing Equation -- 13.10 Transient Stability Limit -- 13.11 Frequency of Oscillations -- 13.12 Critical Clearing Time and Critical Clearing Angle -- 13.13 Fault on a Double-Circuit Line -- 13.14 Transient Stability When Power Is Transmitted During the Fault -- 13.15 Fault Clearance and Reclosure in Double-Circuit System -- 13.16 First Swing Stability -- 13.17 Solution to Swing Equation Step-by-Step Method -- 13.18 Factors Affecting Transient Stability -- 13.18.1 Effect of Voltage Regulator -- 13.19 Excitation System and the Stability Problem -- 13.20 Dynamic Stability -- 13.20.1 Power System Stabilizer -- 13.21 Small Disturbance Analysis -- 13.22 Node Elimination Methods -- 13.23 Other Methods for Solution of Swing Equation -- 13.23.1 Modified Euler's Method -- Worked Examples -- Problems -- Questions -- Index -- Back Cover.
    Additional Edition: ISBN 0-08-101111-3
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9780081011195?
Did you mean 9780081010129?
Did you mean 9780081011249?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages