Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
Fachgebiete(RVK)
Schlagwörter
  • 1
    Online-Ressource
    Online-Ressource
    Duxford, United Kingdom :Woodhead Publishing,
    UID:
    almafu_9961089676102883
    Umfang: 1 online resource (594 pages)
    ISBN: 9780081020647 , 0081020643 , 9780081020630 , 0081020635
    Inhalt: Fundamentals of Aluminium Metallurgy: Recent Advances updates the very successful book Fundamentals of Aluminium Metallurgy. As the technologies related to casting and forming of aluminum components are rapidly improving, with new technologies generating alternative manufacturing methods that improve competitiveness, this book is a timely resource. Sections provide an overview of recent research breakthroughs, methods and techniques of advanced manufacture, including additive manufacturing and 3D printing, a comprehensive discussion of the status of metalcasting technologies, including sand casting, permanent mold casting, pressure diecastings and investment casting, and recent information on advanced wrought alloy development, including automotive bodysheet materials, amorphous glassy materials, and more. Target readership for the book includes PhD students and academics, the casting industry, and those interested in new industrial opportunities and advanced products.
    Anmerkung: Includes index. , Front Cover -- Fundamentals of Aluminium Metallurgy: Recent Advances -- Copyright -- Contents -- Contributors -- Introduction: Aluminium, the Strategic Material -- Chapter 1: New Research Techniques in Aluminium Alloy Development -- 1.1. Introduction -- 1.2. Transmission Electron Microscopy -- 1.2.1. Aberration-Corrected Scanning Transmission Electron Microscopy -- 1.2.1.1. High-Angle Annular Dark-Field-STEM -- 1.2.1.2. HAADF-STEM and EELS -- 1.2.1.3. HAADF-STEM and EDS -- 1.2.1.4. HAADF-STEM and APT -- 1.2.2. In Situ TEM Corrosion Studies -- 1.3. Atom Probe Tomography -- 1.3.1. Atom-by-Atom Analysis of the Solid Solution Phase -- 1.3.1.1. Solute Cluster Analysis -- 1.3.1.2. Short-Range Order Analysis -- 1.3.1.3. Limitations of Atom Probe Data -- 1.3.2. Atom Probe Crystallography -- 1.3.3. Corrosion Investigation -- 1.4. Small-Angle X-Ray Scattering -- 1.4.1. SAXS Mapping -- 1.4.2. In Situ Heating/Cooling Studies -- 1.4.3. In Situ Deformation Studies -- 1.5. Combinatorial and Correlative Characterization Approaches -- 1.5.1. Various Combinations of Techniques vs Combinatorial Investigations -- 1.5.2. Direct Correlative vs Complementary -- 1.5.2.1. APT and SAXS -- 1.5.2.2. APT and TEM -- 1.6. Conclusion -- Chapter 2: Additive Manufacturing of Aluminium-Based Alloys and Composites -- 2.1. Introduction -- 2.2. Additive Manufacturing Processes for Aluminium Alloys -- 2.2.1. Selective Laser Melting -- 2.2.1.1. Powder Characteristics -- 2.2.1.2. Process Parameters -- 2.2.2. Directed Energy Deposition Processes -- 2.3. Aluminium Alloys for Additive Manufacturing -- 2.3.1. Aluminium-Silicon Alloys -- 2.3.1.1. AlSi10Mg -- Effect of SLM Process Parameters -- Microstructure and Crystallographic Texture -- Postbuild Heat Treatments and Fatigue Resistance -- Corrosion and Erosion -- 2.3.1.2. Al-12Si -- DED of Al-12Si -- SLM of Al-12Si. , 2.3.1.3. Other Al-Si Alloys -- 2.3.2. Al-Cu Alloys -- 2.3.2.1. Direct Energy Deposition Processes -- 2.3.2.2. Selective Laser Melting -- 2.3.3. Al-Mg-Sc Alloys -- 2.3.4. Other Al-Based Alloy Systems -- 2.3.5. Alloy Design for AM -- 2.4. Aluminium-Matrix Composites by AM -- 2.5. Summary -- Chapter 3: How to Design and Buy Aluminium Castings -- 3.1. The Design Process -- 3.2. Elements of Good Casting Design -- 3.3. Equal and Unequal Sections -- 3.4. Junctions -- 3.5. Gates, Risers, and Rigging -- 3.6. The Relationship Between Casting Method, Number of Parts, and Achievable Tolerances -- 3.7. Specification of Safety Factors -- 3.8. Factors of Safety in Critical Applications -- 3.9. Factors of Safety and Materials With Uncertainties -- 3.10. Casting Factors -- 3.11. Specification of NDT -- 3.12. Rework and In-Process Welding -- 3.13. Summary -- Chapter 4: Aluminium Investment Casting and Rapid Prototyping for Aerospace Applications -- 4.1. Introduction -- 4.2. The Pattern -- 4.3. Rapid Prototyping for Investment Casting -- 4.4. The Production of High-Integrity Investment Castings -- 4.5. Towards a Fundamental Understanding of the Requirements of Casting Factor 1.0 and a Quality Model for Premium Alumin ... -- 4.6. Experiments -- 4.7. Comparison to Production Components and Test Bars -- 4.8. Determination and Verification of Casting Factor 1.0 for a Premium Investment Casting Process Using A356-T6 Alloy -- 4.9. Summary and Conclusions -- Chapter 5: Advances in the Sand Casting of Aluminium Alloys -- 5.1. Introduction -- 5.2. Moulding Types -- 5.2.1. Green Sand Moulding -- 5.2.2. Chemically Bonded Sand Moulding -- 5.2.3. Shell Process -- 5.2.4. Inorganic Binder Systems -- 5.3. Ablation Casting -- 5.4. Alternative Casting Methods -- 5.5. Printed Sand Moulds and Cores for Casting. , Chapter 6: New Hypoeutectic/Hypereutectic Die-Casting Alloys and New Permanent Mould Casting Alloys That Rely on Strontiu ... -- 6.1. Introduction -- 6.2. The Elements That Provides Die Soldering Resistance at the Lowest Volume Fraction Means Lower Mn and Higher Fe Can B ... -- 6.2.1. Die Soldering and Intermetallics -- 6.3. Strontium, Its Thermodynamics in Aluminium Melts and Its Measured Benefits in Providing Die Soldering Resistance as ... -- 6.4. Using Strontium in Permanent Mould Alloys to Create the Low-Pressure PM Casting Process Without a Die Coating and 16 ... -- 6.4.1. Strontium, Manganese and Iron Have a Synergistic Role in Eliminating Die Soldering -- 6.4.2. Conversion of Conventional Permanent Mould Alloys to Alloys Displaying Die Soldering Resistance -- 6.4.3. Measures of Mechanical Properties to Distinguish Between Castings Made With or Without a Coating -- 6.5. Using Strontium to Create Unique Microstructures for Die Cast Hypereutectic Al-Si-(Cu)-Mg Alloys Having Elongations ... -- 6.5.1. Conventional Hypereutectic Al-Si Alloys, Their History, and Microstructure -- 6.5.2. Using the Al-Si Phase Diagram to Understand the Unique Undercooled Microstructure -- 6.5.3. Mechanical Properties of Alloys With Unique Microstructures -- 6.6. Structural Aluminium Die-Casting Alloys With the Same Numeric Designations as Existing Registered PM and Die-Casting ... -- 6.6.1. Examples of New HPDC Alloys That Will Allow the Die Caster to Compete for PM Applications -- 6.6.2. What Constitutes a Modification to an Existing Registered Aluminium Association Alloy and Still Preserves the Orig ... -- 6.7. Analysing Effects of Iron on T5 Mechanical Properties for B360, 367, 362, F380, and 368 Using Quality Index -- 6.7.1. As-Cast Results -- 6.7.2. T5 Results -- 6.7.3. Comparison to T6 Treated Alloy. , 6.7.4. Discussion of Compositional Differences With Alloys 367, B360, 362, F380, and 368 -- 6.8. Conclusions -- Chapter 7: Thermal Conductivity of Aluminium High-Pressure Die Castings -- 7.1. Introduction -- 7.2. Motor -- 7.3. Voltage Inverter -- 7.4. Thermal Conductivity of Metals and Alloys -- 7.5. Values of Thermal Conductivity for Aluminium Castings -- 7.6. The Role of Alloy Composition and Heat Treatment on Thermal Conductivity of Die Castings -- 7.7. Age Hardening -- 7.8. Alloys 1 and 2 -- 7.9. Alloys 3-5 -- 7.10. Microstructures -- 7.11. Summary -- Chapter 8: Advanced Casting Technologies Using High Shear Melt Conditioning -- 8.1. Introduction -- 8.1.1. Dispersion of Oxide Particles in Aluminium Melts by HSMC -- 8.1.2. Grain Refinement by Oxides Dispersed by HSMC -- 8.2. High Shear Melt Conditioned Direct-Chill Casting of Al Alloys -- 8.3. Reduction of Macrosegregation and Microporosity -- 8.3.1. Refinement and Uniform Distribution of Second Phases -- 8.3.2. Improved Castability and Recyclability -- 8.3.3. Sump Profile and Thermal Gradient -- 8.3.4. Solidification Mechanism During DC and MC-DC Casting -- 8.4. Efficient Degassing of Aluminium Alloy Melts by High Shear Melt Conditioning Technology -- 8.4.1. High Shear Degassing -- 8.5. Physical Modelling of the High Shear Process -- 8.6. Deironing of Aluminium Scrap by High Shearing Processing -- 8.6.1. Sedimentation After High Shear Processing -- 8.6.2. Sedimentation in Continuous Casting Processing -- 8.7. Summary -- Chapter 9: Treatment by External Fields -- 9.1. Introduction -- 9.2. Electromagnetic Stirring -- 9.3. Vibration -- 9.3.1. Electromagnetic Vibration -- 9.3.2. Ultrasonic Treatment -- 9.4. Pulsed Power Techniques -- 9.4.1. Electric Current Pulses -- 9.4.2. Pulsed Magnetic Field -- 9.4.2.1. Low Voltage Pulsed Magnetic Field -- 9.4.2.2. Pulsed Magneto-Oscillation. , 9.5. Grain Refinement Mechanisms -- 9.5.1. Specific Effects of the External Fields and Grain Refinement Mechanism -- 9.5.1.1. Fluid Flow Effect -- 9.5.1.2. Acoustic Effects -- 9.5.1.3. Electromagnetic Effects -- 9.5.1.4. Shock Wave Effect -- 9.5.2. Grain Refinement Theory -- 9.5.2.1. Mould Wall Crystal Separation Theory -- 9.5.2.2. Effects of Alloy Chemistry-Independence Theory -- 9.6. Conclusions and Future Developments -- Chapter 10: Automotive Wrought Aluminium Alloys -- 10.1. Automotive Lightweighting and Wrought Aluminium -- 10.1.1. Automotive Lightweighting -- 10.1.2. The Case for Aluminium -- 10.2. Common Processing Methods -- 10.2.1. Elements of Bulk Deformation Processing for Automotive Applications -- 10.2.1.1. Key Metallurgical Aspects to Bulk Deformation Processing -- 10.2.2. Bulk Deformation Processes -- 10.2.2.1. Rolling -- 10.2.2.2. Extrusion -- 10.2.3. Thermal Treatment -- 10.3. General Metallurgy and Strengthening Mechanisms in Automotive Wrought Al -- 10.3.1. Solid Solution (Point) Strengthening -- 10.3.2. Precipitation Strengthening -- 10.4. Heat-Treatable Alloys -- 10.4.1. 6xxx Series Al-Mg-Si-(Cu) -- 10.4.1.1. Utilization -- 10.4.1.2. Strengthening (Precipitation) in Al-Mg-Si-(Cu) -- 10.4.1.3. Alloying of 6xxx -- 10.4.1.4. Natural Ageing in 6xxx -- 10.4.1.4.1. NA Temporal Evolution -- 10.4.1.4.2. Solute Clusters and Vacancies -- 10.4.1.5. Natural Ageing Prior to Artificial Ageing (Negative NA Effect) -- 10.4.1.6. Design Strategies to Minimize the Influence of Prior NA -- 10.4.1.6.1. Thermal Processing -- 10.4.1.6.2. Compositional Measures -- 10.4.2. Specialty Alloys -- 10.4.2.1. 2xxx Series Al-Cu-(Mg) -- 10.4.2.2. 7xxx Series Al-Zn-Mg-(Cu) -- 10.5. Nonheat-Treatable Alloys -- 10.5.1. 5xxx Series Al-Mg-(Mn) Alloys -- 10.5.1.1. Strengthening (Solid Solution and Strain) in Al-Mg-(Mn) -- 10.5.1.2. Alloying of 5xxx. , 10.5.1.3. Sensitization.
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Buch
    Buch
    Duxford : Woodhead Publishing
    UID:
    b3kat_BV045209212
    Umfang: xxx, 562 Seiten , Illustrationen, Diagramme
    ISBN: 9780081020630
    Serie: Woodhead Publishing series in metals and surface engineering
    Sprache: Englisch
    Fachgebiete: Technik
    RVK:
    Schlagwort(e): Aluminium ; Aluminiumlegierung ; Metallurgie
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780081000632?
Meinten Sie 9780081000670?
Meinten Sie 9780081020234?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz