Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Fachgebiete(RVK)
  • 1
    Online-Ressource
    Online-Ressource
    Cambridge, Massachusetts :Woodhead Publishing,
    UID:
    almafu_9961089890302883
    Umfang: 1 online resource (390 pages).
    ISBN: 9780081021385 , 0081021380 , 9780081021316 , 0081021313
    Serie: Woodhead Publishing series in composites science and engineering
    Anmerkung: Front Cover -- Sustainable Composites for Aerospace Applications -- Copyright Page -- Dedication -- Contents -- List of Contributors -- About the Editors -- Preface -- 1 Materials selection for aerospace components -- 1.1 Introduction -- 1.2 Literature -- 1.3 Aerospace components -- 1.4 Material properties -- 1.4.1 Mechanical properties -- 1.4.2 Thermal properties -- 1.4.3 Economics -- 1.5 Materials selection -- 1.5.1 Ashby's method of materials selection -- 1.5.2 Decision-making methods -- 1.5.3 Knowledge-based quantitative systems -- 1.6 Conclusions -- References -- 2 The role of advanced polymer materials in aerospace -- 2.1 Introduction -- 2.2 Polymer composites -- 2.3 Advanced composite materials components -- 2.4 Aerospace structure and features -- 2.5 Components of an aircraft structure -- 2.5.1 The fuselage -- 2.5.2 Wing contents -- 2.5.3 Wing functions and attachments -- 2.5.4 The tail -- 2.5.5 Undercarriage -- 2.5.6 Engines -- 2.6 Aerospace composite materials -- 2.7 Manufacturing procedures for aerospace composites -- 2.7.1 Composite manufacturing using prepeg -- 2.7.1.1 Hand lay-up -- 2.7.1.2 Automated tape lay-up -- 2.7.1.3 Automated fiber placement -- 2.7.1.4 Resin transfer molding (RTM) -- 2.7.1.5 Vacuum-assisted resin transfer molded process -- 2.7.1.6 Filament winding -- 2.7.1.7 Pultrusion -- 2.8 Aircraft using composite materials -- 2.8.1 Lear fan 2100 -- 2.8.2 Beech starship -- 2.8.3 Boeing -- 2.8.4 Airbus -- 2.8.5 Advanced tactical fighter -- 2.8.6 Advanced technology bomber (B-2) -- 2.8.7 Second generation British harrier "Jump Jet" (AV-8B) -- 2.8.8 Navy fighter aircraft (F-18A) -- 2.8.9 Osprey tilt rotor (V-22) -- 2.9 Advantages and disadvantages of composites in aerospace -- 2.9.1 Advantages -- 2.9.2 Disadvantages -- 2.10 Future of composites in aerospace and other space applications -- References. , 3 Mechanical characteristics of tri-layer eco-friendly polymer composites for interior parts of aerospace application -- 3.1 Introduction -- 3.2 Objectives -- 3.3 Methodology -- 3.4 Experimental details -- 3.4.1 Materials -- 3.4.2 Fiber surface modification -- 3.4.3 Fabrication of composite -- 3.4.4 Tensile and flexural testing -- 3.4.5 Free vibration test -- 3.5 Results and discussion -- 3.5.1 Infrared spectrum analysis -- 3.5.2 Mechanical properties -- 3.5.2.1 Tensile strength -- 3.5.2.2 Flexural strength -- 3.5.2.3 Vibrational characteristics of different layering patterns on hybrid composites -- 3.6 Conclusions -- 3.7 Applications -- Acknowledgments -- References -- 4 Manufacturing techniques of composites for aerospace applications -- 4.1 Introduction -- 4.2 Composite fabrication processes -- 4.2.1 Hand lay-up -- 4.2.2 Spray lay-up -- 4.2.3 Resin transfer molding -- 4.2.4 Compression molding -- 4.2.5 Injection molding -- 4.2.6 Vacuum assisted method -- 4.2.7 Autoclave processing -- 4.2.8 Pultrusion -- 4.2.9 Filament winding -- 4.2.10 Comparison between manufacturing processes -- 4.3 Conclusion -- References -- 5 Composite material overview and its testing for aerospace components -- 5.1 A short introduction to composite materials -- 5.1.1 Composition and classification -- 5.1.2 Towards the future -- 5.1.3 Typical defects and weaknesses -- 5.1.4 Failure mechanisms -- 5.2 Nondestructive inspection methods -- 5.3 The use of infrared thermography in the inspection of composites -- 5.3.1 Infrared thermography nondestructive evaluation -- 5.4 Pulse thermography -- 5.4.1 Estimation of defect size and depth -- 5.4.2 Evaluation of material porosity -- 5.5 Lock-in thermography -- 5.5.1 Estimation of defect size and depth -- 5.5.2 Unsteady-state conditions -- 5.5.3 Some examples of materials inspection with lock-in thermography. , 5.6 Some approaches to application in the field -- 5.7 Assessing the performance of new composite materials -- 5.7.1 On-line monitoring of impact tests -- 5.7.2 What to learn from ΔT images -- 5.7.3 Analysis of ΔT-time distribution -- 5.7.4 Evaluation of damage extension from ΔT images -- 5.8 Noise reduction and discrimination of small thermal stress coupled effects -- 5.9 Conclusion -- References -- 6 Sustainable bio composites for aircraft components -- 6.1 Introduction -- 6.2 Advantages and drawbacks of using natural fibers in aircraft structures -- 6.2.1 Advantages -- 6.2.2 Drawbacks -- 6.3 Materials selection for sustainable aircraft interiors -- 6.4 Natural fiber-reinforced aircraft components -- 6.4.1 Bio composites for aircraft radome application -- 6.4.2 Bio composites for aircraft wing boxes -- 6.4.3 Bio composites for aircraft cabin interior panels -- 6.4.4 Bast fiber-reinforced green composites for aircraft indoor structure applications -- 6.5 Case study -- 6.5.1 Airbus: "Aim of Developing a Fully Recyclable Aircraft Cabin Interior" -- 6.5.2 Airbus helicopters -- 6.5.3 Boeing research -- 6.5.4 Process for advanced management of end-of-life of aircraft (PAMELA) -- 6.6 Conclusion -- 6.7 Future scope -- References -- 7 Impact damage modeling in laminated composite aircraft structures -- 7.1 Introduction -- 7.2 Analysis of impact damage in aircraft structures from composite laminates -- 7.2.1 Impact loads -- 7.2.2 The mechanism of impact damage accumulations -- 7.2.3 The effects of impact damage -- 7.3 Finite element modeling of impact on laminates -- 7.3.1 Finite element method (FEM) -- 7.3.1.1 The implicit method -- 7.3.1.2 The explicit method -- 7.3.2 Impact on laminate plate -- 7.3.3 Impact models according to abrate -- 7.4 Multiscale modeling of impact damage on laminated composites -- 7.4.1 General. , 7.4.2 Explicit multiscale modeling of impact damage on laminated composites -- 7.5 Numerical simulation of impact on composite laminated structures -- 7.5.1 Numerical approach -- 7.5.2 Damage modeling with the finite elements -- 7.5.3 Modeling and simulation of projectile impact on carbon fiber-reinforced panels in software ABAQUS -- 7.6 Result analysis and discussion -- 7.7 Conclusions -- 7.8 Sources of further information and advice -- References -- 8 Natural lightweight hybrid composites for aircraft structural applications -- 8.1 Introduction -- 8.2 Advantages of hybrid composites -- 8.3 Classification of fibers -- 8.3.1 Natural fiber -- 8.3.2 Synthetic fiber -- 8.4 Classification of matrix -- 8.5 Limitations of natural fibers -- 8.6 Processing techniques -- 8.6.1 Hand lay-up -- 8.6.2 Vacuum infusion method -- 8.6.3 Resin transfer molding (RTM) -- 8.6.4 Compression molding -- 8.7 Mechanical properties of natural/synthetic fiber hybrid composites -- 8.7.1 Effect of elevated temperature on hybrid composites -- 8.7.2 Effect of moisture absorption on hybrid composites -- 8.8 Applications of hybrid composites in the aerospace industry -- 8.9 Conclusions -- Acknowledgement -- References -- 9 Composite patch repair using natural fiber for aerospace applications, sustainable composites for aerospace applications -- 9.1 Introduction -- 9.2 Literature review -- 9.2.1 Structural patch repair -- 9.3 Composite materials -- 9.4 Kenaf fiber -- 9.5 Damage detection techniques -- 9.6 Methodology -- 9.6.1 Specimen fabrication -- 9.7 Lay-up process -- 9.8 Vacuum bagging process -- 9.9 Patch repair on carbon fiber-reinforced plastic specimens -- 9.10 Simulating damage on specimens -- 9.11 Kenaf patching -- 9.12 Application of repair plies -- 9.13 Compression test -- 9.14 Design and fabrication of a compression test jig -- 9.15 Compression test process. , 9.16 Tensile test -- 9.17 Damage detection -- 9.18 Results and discussion -- 9.18.1 Compression test -- 9.19 Tensile test -- 9.20 Piezoelectric sensor response correlates with mechanical test -- 9.21 Conclusion -- References -- Further reading -- 10 High performance machining of carbon fiber-reinforced plastics -- 10.1 Introduction -- 10.2 Drilling of carbon fiber-reinforced plastics composite -- 10.3 Ultrasonic drilling of carbon fiber-reinforced plastic composites -- 10.4 Hole-making of carbon fiber-reinforced plastics composite using a helical milling technique -- 10.5 Hole making of carbon fiber-reinforced plastic composite stack using a helical milling technique -- References -- 11 Ultrasonic inspection of natural fiber-reinforced composites -- 11.1 Introduction -- 11.2 Defects of natural composite -- 11.3 Terms and description of defects in composite -- 11.4 Visual inspection and its limitations -- 11.5 Inspection types versus testing apparatus -- 11.5.1 Honeycomb bonding -- 11.5.1.1 Tap test -- Procedure to conduct the tap testing -- Calibration procedure -- Inspection procedure -- Evaluation procedure -- 11.5.1.2 Bond test -- Preliminary setup -- Standardization procedure -- Inspection procedure for skin of honeycomb bonds -- Evaluation procedure -- Reporting procedure -- 11.5.2 Laminate -- 11.5.2.1 Display type -- 11.5.2.2 Pulse echo -- 11.5.2.3 Immersion through transmission -- 11.6 Other nondestructive testing methods -- 11.7 Conclusion -- References -- 12 Potential of natural fiber/biomass filler-reinforced polymer composites in aerospace applications -- 12.1 Introduction -- 12.2 Reinforcements -- 12.2.1 Biomass fibers -- 12.2.1.1 Classification of agricultural biomass raw materials -- 12.2.2 Natural fibers -- 12.2.2.1 Chemical composition of natural fibers -- 12.2.2.2 Physical properties of natural fibers. , 12.2.2.3 Mechanical properties of natural fibers.
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Buch
    Buch
    Cambridge, MA : Woodhead Publishing, an imprint of Elsevier
    UID:
    b3kat_BV045532486
    Umfang: xxiv, 364 Seiten , Illustrationen, Diagramme
    ISBN: 9780081021316
    Serie: Woodhead Publishing series in composites science and engineering
    Anmerkung: Includes bibliographical references and index
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 978-0-08-102138-5
    Sprache: Englisch
    Fachgebiete: Technik
    RVK:
    Schlagwort(e): Faserverbundwerkstoff ; Nachhaltigkeit ; Luftfahrttechnik ; Flugzeugbau
    Mehr zum Autor: Jawaid, Mohammad
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780081002131?
Meinten Sie 9780081011317?
Meinten Sie 9780081012314?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz