UID:
almafu_9961089624702883
Umfang:
1 online resource (353 pages).
ISBN:
9780081021408
,
0081021402
,
9780081021392
,
0081021399
Serie:
Woodhead Publishing Series in Electronic and Optical Materials
Anmerkung:
Includes index.
,
Front Cover -- CMOS Past, Present, and Future -- Copyright -- Contents -- Contributors -- Preface -- Acknowledgments -- Chapter 1: Basics of metal-oxide-semiconductor field-effect transistor (MOSFET) -- 1.1. Introduction -- 1.2. Basics of MOSFET's operation -- 1.2.1. Accumulation -- 1.2.2. Depletion -- 1.2.3. Inversion -- 1.2.4. Strong inversion -- 1.3. Figures of merit of MOSFETs -- 1.4. Evolution of the MOSFET structure -- References -- Chapter 2: Scaling and evolution of device architecture -- 2.1. Introduction -- 2.2. Dimension and architectural scaling -- 2.2.1. Scaling principles -- 2.2.2. Impact of the device architecture -- 2.2.3. Junctionless transistor -- 2.3. Lithography for downscaling -- 2.3.1. The resolution enhancement -- 2.3.1.1. Wavelength of light source reduce -- 2.3.1.2. Improvement of NA -- 2.3.2. Double patterning technology -- 2.3.3. Extreme ultraviolet lithography (EUVL) technology -- 2.3.4. Reticle enhancement techniques (RETs) -- 2.4. Electron-beam lithography (EBL) -- 2.5. Strain engineering -- 2.6. Impact of scaling -- 2.7. Beyond CMOS and beyond Si CMOS -- 2.7.1. Tunnel FETs -- 2.7.2. Spintronics -- References -- Chapter 3: Strain engineering -- 3.1. Introduction -- 3.2. Basic definitions of strain type and design -- 3.3. Strain design in MOSFETs -- 3.4. Methods to induce strain in the CMOS structure -- 3.4.1. Epitaxy of stressor materials -- 3.4.2. Stress memorization technique (SMT) -- 3.4.3. DSL -- 3.5. Embedded Si1-yCy(eSi1-yCy) for nMOS -- 3.5.1. Strain and critical thickness -- 3.5.2. Critical thickness of SiGe alloys on patterned substrates -- 3.5.3. Strain measurements -- 3.5.4. Raman spectroscopy for strain measurement -- References -- Further reading -- Chapter 4: High-κ dielectric and metal gate -- 4.1. The scaling of MOSFET devices -- 4.2. SiO2 and poly-Si gate electrode -- 4.2.1. SiO2 gate dielectric.
,
4.2.2. Poly-Si gate electrode -- 4.3. High-κ dielectric and metal gate -- 4.3.1. High-κ gate dielectric -- 4.3.2. Metal gate electrode -- 4.4. Hafnium-based high-κ dielectrics -- 4.4.1. Hafnium oxide -- 4.4.2. Hafnium aluminate -- 4.4.3. Hafnium lanthanate -- 4.5. Integration of HfO2 dielectric with compatible metal gate electrodes -- 4.6. High-κ dielectric and metal gate electrodes for FinFETs -- 4.7. Summary -- References -- Further Reading -- Chapter 5: Channel materials -- 5.1. Introduction -- 5.2. High-mobility channels -- 5.3. SiGe channel -- 5.4. Ge channel -- 5.5. GeSn channel -- 5.6. III-V channel -- 5.7. Two-dimensional channel materials -- 5.7.1. Graphene channel -- 5.7.2. Graphene-like channel -- References -- Chapter 6: Challenges in ultra-shallow junction technology -- 6.1. Introduction -- 6.2. Basics of dopant activation and diffusion -- 6.2.1. Solubility and distribution coefficient -- 6.2.2. Dopant diffusion -- 6.2.3. Doping methods -- 6.3. Shallow boron junctions in silicon -- 6.3.1. Boron diffusion in silicon -- 6.3.2. Transient-enhanced diffusion of B in Si -- 6.3.3. Boron-interstitial clustering -- 6.4. N-type diffusion in germanium -- 6.4.1. Diffusion mechanism of n-type dopants in Ge -- 6.4.2. N-type dopant control in Ge by co-implantation -- 6.4.3. Point defect engineering -- 6.5. Summary and outlook -- References -- Further reading -- Chapter 7: Advanced contact technology -- 7.1. Introduction -- 7.2. Characterizations of extremely low ρc -- 7.2.1. MR-CTLM structure -- 7.2.2. RTLM structure -- 7.3. Ohmic contacts on Si/SiGe substrate -- 7.3.1. Modulation of SBHs on Si/SiGe substrate -- 7.3.1.1. MIS method -- 7.3.1.2. Interface passivation -- 7.3.1.3. Dopant segregation -- 7.3.1.4. Alloying -- 7.3.2. Ohmic contacts -- 7.3.2.1. MIS Ohmic contact -- 7.3.2.2. Ohmic contacts with interface passivation.
,
7.3.2.3. Ohmic contacts with dopant segregation -- 7.3.2.4. Ohmic contact with higher dopant concentration -- 7.4. Ohmic contacts on Ge/III-V -- 7.4.1. Modulation of SBH on Ge/III-V semiconductors -- 7.4.1.1. MIS method -- 7.4.1.2. Interface passivation -- 7.4.1.3. Dipole and dopant segregation -- 7.4.1.4. SBH modulation on III-V materials -- 7.4.2. Ohmic contacts on Ge/III-V semiconductors -- 7.4.2.1. MIS Ohmic contacts -- 7.4.2.2. Ohmic contacts with interface passivation and dopant segregation -- 7.4.2.3. Ohmic contacts with higher doping concentration -- 7.4.2.4. Ohmic contacts on III-V semiconductors -- 7.5. Ohmic contacts on potential CMOS channel materials -- 7.6. Summary -- References -- Chapter 8: Advanced interconnect technology and reliability -- 8.1. Introduction -- 8.2. Copper interconnect integration -- 8.2.1. Damascene integration -- 8.2.1.1. Single damascene integration -- 8.2.1.2. Dual damascene integration -- 8.2.2. Copper resistance with interconnect scaling -- 8.2.3. New copper integration scheme -- 8.3. Low-k dielectric characteristics and classification -- 8.3.1. Low-k characteristics -- 8.3.1.1. Material composition -- 8.3.1.2. Porosity -- 8.3.2. Low-k classification and characterization -- 8.3.3. Low-k dielectrics integration challenges -- 8.3.4. Air gap implementation in interconnect -- 8.4. Copper interaction with silicon and dielectrics -- 8.4.1. Copper interaction with silicon -- 8.4.2. Copper interaction with dielectrics -- 8.5. Metal diffusion barriers -- 8.5.1. Intermetal barrier material selection -- 8.5.2. Metal diffusion barrier deposition -- 8.5.2.1. PVD barrier deposition -- 8.5.2.2. ALD barrier deposition -- 8.6. Reliability of copper metallization -- 8.6.1. Electromigration basics -- 8.6.1.1. Copper electromigration -- 8.6.2. Stress-induced voiding -- 8.7. Reliability of advanced intermetal dielectrics.
,
8.7.1. Leakage mechanism of intermetal dielectrics -- 8.7.1.1. Electronic transport in silicon thermal oxide -- 8.7.1.2. Electronic transport in intermetal dielectrics -- 8.7.2. Breakdown characteristics of intermetal dielectrics -- 8.7.2.1. Copper diffusion -- 8.7.2.2. Moisture absorption -- 8.7.2.3. Porosity influence -- 8.8. Reliability statistics and failure models -- 8.8.1. Probability distribution functions -- 8.8.1.1. Weibull distribution -- 8.8.1.2. Log-Normal distribution -- 8.8.2. Breakdown acceleration models -- 8.8.2.1. Gate oxide models -- 8.8.2.2. Models for intermetal dielectrics -- 8.9. The future of interconnect: beyond Cu and low-k -- 8.10. Summary -- References -- Final words -- Acronyms -- Index -- Back Cover.
Sprache:
Englisch
Bookmarklink