UID:
almahu_9949982592702882
Format:
1 online resource (6933 pages)
Edition:
3rd ed.
ISBN:
9780081026892
,
0081026897
Content:
Comprehensive Coordination Chemistry III, Nine Volume Set describes the fundamentals of metal-ligand interactions, provides an overview of the systematic chemistry of this class of compounds, and details their importance in life processes, medicine, industry and materials science. This new edition spans across 9 volumes, 185 entries and 6600 printed pages. Comprehensive Coordination Chemistry III is not just an update of the second edition, it includes a significant amount of new content. In the descriptive sections 3-6, emphasis is placed upon material that has appeared in primary and secondary review literature since the previous edition published. The material in other sections is newly written, with an emphasis on modern aspects of coordination chemistry and the latest developments. The metal-ligand interaction is the link between the award of the 1913 Nobel Prize in Chemistry to Alfred Werner, the father of Coordination Chemistry, the 1987 prize for supramolecular chemistry and the 2016 award for molecular machines. The key role of coordination chemistry in the assembly of hierarchical nano- and micro-dimensioned structures lies at the core of these applications and so this Major Reference Work bridges several sub-disciplines of chemistry, thus targeting a truly interdisciplinary audience.
Note:
9780081026892v1_WEB -- Front Cover -- COMPREHENSIVE COORDINATION CHEMISTRY III -- COMPREHENSIVE COORDINATION CHEMISTRY III -- Copyright -- CONTENTS OF VOLUME 2 -- EDITOR BIOGRAPHIES -- CONTRIBUTORS TO VOLUME 2 -- PREFACE -- FOREWORD -- 1.01 -A Short History of Coordination Compounds: The Journey From Plant Extracts to the Present Day -- 1.01.1 Introduction -- 1.01.2 Coordination Chemistry Before Documented History -- 1.01.2.1 Color -- 1.01.3 Into Documented History -- 1.01.3.1 An Early Copper Complex -- 1.01.3.2 The Color Blue -- 1.01.3.3 Noble Metal Chemistry in the 18th Century CE -- 1.01.3.4 Citizen Tassaert and the Genesis of Cobalt Coordination Chemistry -- 1.01.3.5 The Name's the Thing -- 1.01.3.6 It's All to Do With Color -- 1.01.4 Valence and Werner -- 1.01.4.1 Valence-Not as Simple as You Might Think -- 1.01.4.2 The Werner-Jørgensen Controversy-Different Views on Variable Valence -- 1.01.4.3 Werner-Primary and Secondary Valence -- 1.01.5 Into the 20th Century CE-A Time of Techniques, Models, and Methods -- 1.01.5.1 The Quantification of Color-Absorption Spectroscopy -- 1.01.5.2 Crystal Field Theory: A Successful Model With No Basis in Chemistry -- 1.01.5.3 From Crystal Field to Ligand Field -- 1.01.5.4 Linus Pauling, The Nature of the Chemical Bond and the Valence Bond Approach -- 1.01.5.5 The Chelate Effect -- 1.01.5.6 Ligands -- 1.01.5.7 Magnetism-From a Simple Model to Profound Complexity -- 1.01.5.8 Good Vibrations -- 1.01.5.9 Chemistry Gets Heavy-The Evolution of Mass Spectrometric Techniques -- 1.01.5.10 Looking Into the Soul of Molecules-NMR Spectroscopic Methods -- 1.01.5.11 Electrons Spin Too! -- 1.01.5.12 Bragging About It-The Evolution of Crystallography as a Chemical Tool -- 1.01.6 Conclusions and Prospects -- References -- 1.02 -Fundamentals: Ligands, Complexes, Synthesis and Structure: An Introduction -- 1.02.1 Introduction.
,
1.02.2 Organization of this Volume -- 1.02.3 Section 1 - Ligands -- 1.02.3.1 Neutral Ligands -- 1.02.3.2 Anionic Ligands -- 1.02.3.3 Pincer Ligands -- 1.02.3.4 Redox-Active Ligands -- 1.02.3.5 Coordination Chemistry of Main Group Compounds -- 1.02.4 Section 2 - Reactivity and Structure of Complexes of Small Molecules -- 1.02.5 Section 3 - Coordination Polymers and Coordination Frameworks -- 1.02.6 Section 4 - Synthetic Methods and Characterization Techniques -- References -- 1.03 -Phosphorus Ligands -- 1.03.1 Brief History -- 1.03.2 Atropoisomeric Diphosphines -- 1.03.2.1 Introduction -- 1.03.2.2 Synthesis -- 1.03.2.3 Property -- 1.03.2.4 Coordination Chemistry -- 1.03.2.5 Applications in Catalysis -- 1.03.3 P-Stereogenic Diphosphines and Diphospholanes -- 1.03.3.1 Introduction -- 1.03.3.2 Synthesis and Property -- 1.03.3.3 Coordination Chemistry and Applications in Catalysis -- 1.03.4 P-Stereogenic 2,3-Dihydrobenzo[1,3]Oxaphospholes -- 1.03.4.1 Introduction -- 1.03.4.2 Synthesis -- 1.03.4.3 Coordination Chemistry and Applications in Catalysis -- 1.03.5 Josiphos Ligands -- 1.03.5.1 Introduction -- 1.03.5.2 Synthesis and Property -- 1.03.5.3 Coordination Chemistry and Applications in Catalysis -- 1.03.6 Spiro Phosphines -- 1.03.6.1 Introduction -- 1.03.6.2 Synthesis -- 1.03.6.3 Coordination Chemistry -- 1.03.6.4 Applications in Catalysis -- 1.03.6.5 Asymmetric Hydrogenation With Millions of Turnovers -- 1.03.7 Chiral Diphosphine Oxides -- 1.03.7.1 Introduction -- 1.03.7.2 Synthesis and Property -- 1.03.7.3 Coordination Chemistry -- 1.03.7.4 Applications in Catalysis -- 1.03.8 Conclusion and Outlook -- Acknowledgment -- References -- 1.04 -Bipyridine Ligands -- 1.04.1 Introduction and Scope of the Chapter -- 1.04.2 Synthesis -- 1.04.2.1 Traditional Synthetic Methods -- 1.04.2.2 Homocoupling of Halopyridines -- 1.04.2.3 Cross-Coupling Reactions.
,
1.04.2.4 Preparation From Acyclic Precursors -- 1.04.2.5 Alternative Synthetic Approaches -- 1.04.2.6 Functionalization of the Bipyridine Core -- 1.04.3 Coordination Behavior of Bipyridine -- 1.04.3.1 Overview of Coordination Chemistry -- 1.04.3.2 Electronic Effects of Substituted Bipyridines -- 1.04.3.3 Water-Soluble Bipyridine Ligands -- 1.04.3.4 Polymers and Macromolecular Assemblies -- 1.04.4 Redox Non-Innocence -- 1.04.4.1 Redox Non-Innocent Bipyridine Ligands in Structural and Organometallic Chemistry -- 1.04.4.2 Redox Non-Innocent Ligands in Catalytic and Stoichiometric Transformations -- 1.04.4.3 Redox Non-Innocent Ligands in Redox Flow Batteries -- 1.04.5 Chemical Reactivity of the Coordinated bpy Ligand -- 1.04.5.1 Rollover Cyclometalation -- 1.04.5.2 Other Reactivity of Coordinated Bipyridines -- 1.04.6 Photophysical Applications -- 1.04.7 Bioinorganic Applications -- 1.04.8 Coordination Chemistry With Other Bipyridine Isomers -- Acknowledgment -- References -- 1.05 -Phenanthroline Ligands -- 1.05.1 Introduction and Scope -- 1.05.2 Phenanthroline Ligands -- 1.05.2.1 General Considerations -- 1.05.2.2 2- and 2,9-Substitutions -- 1.05.2.2.1 Halogenation -- 1.05.2.2.2 CC Bond formation -- 1.05.2.2.3 Other C-heteroatom bond formations -- 1.05.2.3 3- and 3,8-Substitutions -- 1.05.2.4 4- and 4,7-Substitutions -- 1.05.2.5 5- and 5,6-Substitutions -- 1.05.2.6 Research Trends in 1,10-Phenanthrolines -- 1.05.2.6.1 Synthetic methodologies -- 1.05.2.6.2 DNA interactions -- 1.05.2.6.3 Chromophoric and luminescent metal complexes -- 1.05.2.6.4 Functional molecular materials -- References -- 1.06 -Coordination Chemistry of Phosphine Ligands With Pendant Amines -- 1.06.1 Introduction and Overview -- 1.06.1.1 Redox-Active Metalloenzymes and Molecular Electrocatalysts -- 1.06.1.2 A Modular Approach to the Design of Molecular Electrocatalysts.
,
1.06.1.2.1 Selection of metals -- 1.06.1.2.2 The first coordination sphere -- 1.06.1.2.3 Second coordination sphere -- 1.06.1.2.4 Outer coordination sphere -- 1.06.1.2.5 Solution -- 1.06.2 Metal Complexes Containing Monodentate Ligands With Pendant Amines -- 1.06.2.1 Dihydrogen Bonding in Ir Complexes With Protonated and Non-protonated Pendant Amines -- 1.06.2.2 Complexes of Monodentate Phosphine Ligands with Pendant Amines: Flexible vs Fixed and Catalysis -- 1.06.2.3 Summary of Complexes Containing Monodentate Ligands with Pendant Amines -- 1.06.3 Metal Complexes Containing Bidentate Phosphine Ligands with Pendant Amines -- 1.06.3.1 Symmetric and Asymmetric Diphosphine Ligands with Terminal Pendant Amines -- 1.06.3.2 Metal Complexes Containing Bidentate Phosphine Ligands with One Bridging Pendant Amine -- 1.06.3.3 Metal Complexes Containing PR2NR'2 Ligands -- 1.06.3.3.1 Intraligand NN interactions -- 1.06.3.3.2 Electrostatic interactions of positioned pendant amines with ligands in the first coordination sphere -- 1.06.3.3.3 Intra- and interligand interactions of P substituents of PR2NR'2 ligands -- 1.06.3.3.4 Interligand steric interactions of N substituents -- 1.06.3.4 Metal Complexes Containing Bidentate Phosphine Ligands with Two Different Backbones, 8-PR2NR' and 7-PR2NR' -- 1.06.4 Electrostatic Interactions of Positioned Pendant Amines With Substrates of Interest for Electrocatalytic Energy Stor ... -- 1.06.4.1 CO Complexes and Electrocatalytic Reactions Involving Carbon-Containing Substrates -- 1.06.4.2 O2 and H2O Complexes With Positioned Pendant Amines and Electrocatalytic O2 Reduction -- 1.06.4.3 Ammonia and N2 Complexes With Positioned Pendant Amines and Catalytic NH3 Oxidation -- 1.06.5 Fe and Mn Electrocatalysts for H2 Oxidation with PRNR'PR or PR2NR'2 Ligands -- 1.06.5.1 General Mechanism.
,
1.06.5.2 Reactions of H2 With Fe and Mn Complexes with PRNR'PR or PR2NR'2 Ligands -- 1.06.5.3 Interactions that Compete with H2 Addition to 16-Electron Fe and Mn Complexes -- 1.06.5.4 Intramolecular Proton Transfer and Heterolytic Cleavage of H2 -- 1.06.5.4.1 Heterolytic cleavage of H2 by Fe and Mn complexes containing PRNR'PR ligands -- 1.06.5.4.2 Heterolytic cleavage of H2 by Fe and Mn complexes containing PR2NR'2 ligands -- 1.06.5.5 Intermolecular Proton Exchange Following Heterolytic Cleavage of H2 for Complexes With PRNR'PR and PR2NR'2 Ligands -- 1.06.5.5.1 Intermolecular proton exchange following heterolytic cleavage of H2 for Fe and Mn complexes with PRNR'PR ligands -- 1.06.5.5.2 Intermolecular proton exchange following heterolytic cleavage of H2 for Fe and Mn complexes with PR2NR'2 ligands -- 1.06.5.6 Intramolecular Proton Transfer Coupled to Electron Transfer for Fe and Mn Hydride Intermediates with PRNR'PR and P ... -- 1.06.5.7 Intermolecular Proton Transfer Coupled to Electron Transfer -- 1.06.6 Ni-Based H2 Oxidation Electrocatalysts Containing PRNR'PR, PR2NR'2, and 8PCy2NH Ligands -- 1.06.6.1 Overview of Ni-Based H2 Oxidation Electrocatalysts -- 1.06.6.2 General Mechanism for H2 Oxidation by Ni Catalysts Containing Pendant Amines -- 1.06.6.3 H2 Addition to Nickel Complexes -- 1.06.6.4 Competitive Interactions for the Vacant Site of NiII Complexes -- 1.06.6.5 Products of H2 Addition to NiII Complexes -- 1.06.6.6 Intramolecular Proton Transfer Reactions and Interconversion of H2 Addition Products -- 1.06.6.7 Intermolecular Proton Transfer Reactions and Interconversion of H2 Addition Products -- 1.06.6.8 Electron Transfer Reactions for Ni Catalysts and Intermediates -- 1.06.6.8.1 NiII/I and NiI/0 couples for [Ni(PRNR'PR)2]2+ and [Ni(PR2NR'2)2]2+ complexes.
,
1.06.6.8.2 Potentials of the NiI/0 couples for the endo/endo, endo/exo, and exo/exo isomers of [Ni(PR2NR'2H)2]2+ complexes.
Language:
English
Subjects:
Chemistry/Pharmacy
URL:
Volltext
(URL des Erstveröffentlichers)
Bookmarklink