Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
Subjects(RVK)
Access
  • 1
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Elsevier, | Waltham, MA :Morgan Kaufmann,
    UID:
    almafu_9958086737802883
    Format: 1 online resource (xxvi, 261 pages) : , illustrations
    Edition: 1st edition
    ISBN: 9780124047242 , 0124047246
    Series Statement: Gale eBooks
    Content: Principles of Big Data helps readers avoid the common mistakes that endanger all Big Data projects. By stressing simple, fundamental concepts, this book teaches readers how to organize large volumes of complex data, and how to achieve data permanence when the content of the data is constantly changing. General methods for data verification and validation, as specifically applied to Big Data resources, are stressed throughout the book. The book demonstrates how adept analysts can find relationships among data objects held in disparate Big Data resources, when the data objects are
    Note: Description based upon print version of record. , Front Cover; Principles of Big Data: Preparing,Sharing,and Analyzing Complex Information; Copyright; Dedication; Contents; Acknowledgments; Author Biography; Preface; Introduction; Definition of Big Data; Big Data Versus Small Data; Whence Comest Big Data?; The Most Common Purpose of Big Data is to Produce Small Data; Opportunities; Big Data Moves to the Center of the Information Universe; Chapter 1: Providing Structure to Unstructured Data; Background; Machine Translation; Autocoding; Indexing; Term Extraction; Chapter 2: Identification, Deidentification, and Reidentification; Background , Features of an Identifier System Registered Unique Object Identifiers; Really Bad Identifier Methods; Embedding Information in an Identifier: Not Recommended; One-Way Hashes; Use Case: Hospital Registration; Deidentification; Data Scrubbing; Reidentification; Lessons Learned; Chapter 3: Ontologies and Semantics; Background; Classifications, the Simplest of Ontologies; Ontologies, Classes with Multiple Parents; Choosing a Class Model; Introduction to Resource Description Framework Schema; Common Pitfalls in Ontology Development; Chapter 4: Introspection; Background; Knowledge of Self , eXtensible Markup Language Introduction to Meaning; Namespaces and the Aggregation of Meaningful Assertions; Resource Description Framework Triples; Reflection; Use Case: Trusted Time Stamp; Summary; Chapter 5: Data Integration and Software Interoperability; Background; The Committee to Survey Standards; Standard Trajectory; Specifications and Standards; Versioning; Compliance Issues; Interfaces to Big Data Resources; Chapter 6: Immutability and Immortality; Background; Immutability and Identifiers; Data Objects; Legacy Data; Data Born from Data; Reconciling Identifiers across Institutions , Zero-Knowledge Reconciliation The Curator ́s Burden; Chapter 7: Measurement; Background; Counting; Gene Counting; Dealing with Negations; Understanding Your Control; Practical Significance of Measurements; Obsessive-Compulsive Disorder: The Mark of a Great Data Manager; Chapter 8: Simple but Powerful Big Data Techniques; Background; Look At the Data; Data Range; Denominator; Frequency Distributions; Mean and Standard Deviation; Estimation-Only Analyses; Use Case: Watching Data Trends with Google Ngrams; Use Case: Estimating Movie Preferences; Chapter 9: Analysis; Background; Analytic Tasks , Clustering, Classifying, Recommending, and Modeling Clustering Algorithms; Classifier Algorithms; Recommender Algorithms; Modeling Algorithms; Data Reduction; Normalizing and Adjusting Data; Big Data Software: Speed and Scalability; Find Relationships, Not Similarities; Chapter 10: Special Considerations in Big Data Analysis; Background; Theory in Search of Data; Data in Search of a Theory; Overfitting; Bigness Bias; Too Much Data; Fixing Data; Data Subsets in Big Data: Neither Additive nor Transitive; Additional Big Data Pitfalls; Chapter 11: Stepwise Approach to Big Data Analysis; Background , Step 1. A Question Is Formulated , English
    Additional Edition: ISBN 9780124045767
    Additional Edition: ISBN 0124045766
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almafu_BV042314328
    Format: 1 Online-Ressource (xxvi, 261 Seiten).
    ISBN: 978-0-12-404724-2 , 0-12-404724-6 , 0-12-404576-6
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-0-12-404576-7
    Language: English
    Subjects: Computer Science
    RVK:
    RVK:
    Keywords: Big Data ; Datenmanagement ; Datenanalyse ; Datenaufbereitung
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Elsevier,
    UID:
    almahu_9948318430502882
    Format: 1 online resource (xxvi, 261 p.)
    Edition: Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
    Language: English
    Keywords: Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9780123747242?
Did you mean 9780124017245?
Did you mean 9780124047082?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages