Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Amsterdam, [Netherlands] :Academic Press,
    UID:
    almahu_9948325535102882
    Format: 1 online resource (381 pages) : , illustrations
    Edition: Second edition.
    ISBN: 9780124079229 (e-book)
    Additional Edition: Print version: Roos, Yrjö H. Phase transitions in foods. Amsterdam, [Netherlands] : Academic Press, c2016 ISBN 9780124080867
    Language: English
    Keywords: Electronic books. ; Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Book
    Book
    Amsterdam ; Boston ; Heidelberg ; London ; New York ; Oxford ; Paris ; San Diego ; San Francisco ; Singapore ; Sydney ; Tokyo : Elsevier
    UID:
    b3kat_BV042745545
    Format: XII, 367 Seiten , Illustrationen
    Edition: Second edition
    ISBN: 9780124080867
    Language: English
    Subjects: Chemistry/Pharmacy
    RVK:
    Keywords: Lebensmittel ; Phasenumwandlung
    Author information: Drusch, Stephan 1970-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Amsterdam, [Netherlands] :Academic Press,
    UID:
    edocfu_9960074030402883
    Format: 1 online resource (0 p.)
    Edition: Second edition.
    ISBN: 0-12-407922-9 , 0-12-408086-3
    Note: Description based upon print version of record. , Front Cover -- Phase Transitions in Foods -- Copyright Page -- Contents -- About the Authors -- Preface -- 1 Introduction to phase transitions -- 1.1 Introduction -- 1.2 Thermodynamics -- 1.2.1 Basic Terminology -- 1.2.2 First Law of Thermodynamics -- 1.2.2.1 Enthalpy -- 1.2.2.2 Heat capacity -- 1.2.3 Second Law of Thermodynamics -- 1.2.3.1 Entropy -- 1.2.3.2 Helmholtz free energy -- 1.2.3.3 Gibbs energy -- 1.3 Characterization of Phase Transitions -- 1.3.1 Phase Diagrams -- 1.3.2 Gibbs Energy of Phases -- 1.3.3 Classification of Phase Transitions -- 1.3.3.1 First-order transitions -- 1.3.3.2 Second-order and higher-order transitions -- 1.3.3.3 Effects of pressure on transition temperatures -- 1.3.4 Effects of Composition on Transition Temperatures -- 1.3.4.1 Raoult's law -- 1.3.4.2 Henry's law -- References -- 2 Physical state and molecular mobility -- 2.1 Introduction -- 2.2 Crystallization and Melting -- 2.2.1 Nucleation and Crystal Growth -- 2.2.1.1 Nucleation -- Homogeneous nucleation -- Heterogeneous nucleation -- Secondary nucleation -- 2.2.1.2 Crystal growth -- 2.3 The Physical State of Amorphous Materials -- 2.3.1 Mechanical Properties -- 2.3.1.1 Glass formation and glass transition -- 2.3.1.2 Young's modulus -- 2.3.1.3 Shear modulus -- 2.3.1.4 Storage and loss moduli -- 2.3.2 Characterization of the Physical State -- 2.3.2.1 The glassy state -- 2.3.2.2 Glass transition temperature range -- 2.3.2.3 Rubbery plateau region -- 2.3.2.4 Rubbery flow region -- 2.3.2.5 Liquid flow region -- 2.3.3 Glass Transition Theories -- 2.3.3.1 Free volume theory -- 2.3.3.2 Kinetic theory -- 2.3.3.3 Thermodynamic theory -- 2.3.3.4 Other theories -- 2.4 Molecular Mobility and Plasticization -- 2.4.1 Mechanical Properties -- 2.4.1.1 Relaxation times -- The WLF equation -- WLF constants -- 2.4.1.2 Viscosity -- 2.4.1.3 Dynamic mechanical properties. , 2.4.2 Plasticization and Molecular Weight -- 2.4.2.1 Melting temperature -- 2.4.2.2 Glass transition and molecular weight -- 2.4.2.3 Glass transitions of mixtures -- 2.4.3 Crystallization of Amorphous Compounds -- 2.4.3.1 Nucleation and crystal growth -- 2.4.3.2 Crystallization kinetics -- References -- 3 Methodology -- 3.1 Introduction -- 3.2 Determination of the Physical State and Crystallinity -- 3.2.1 Imaging Techniques -- 3.2.1.1 Optical microscopy -- 3.2.1.2 Electron microscopy -- 3.2.1.3 Atomic force microscopy -- 3.2.1.4 Magnetic resonance imaging and X-ray tomography -- 3.2.2 Diffraction Techniques -- 3.2.2.1 X-ray diffraction -- 3.2.2.2 Electron and neutron diffraction -- 3.2.3 Spectroscopic Techniques -- 3.3 Determination of Physical State and Molecular Mobility -- 3.3.1 NMR Spectroscopy -- 3.3.2 ESR Spectroscopy -- 3.3.3 Positron Annihilation Lifetime Spectroscopy -- 3.4 Determination of Transition Temperatures and Structural Relaxations -- 3.4.1 Calorimetry and Thermal Analysis -- 3.4.1.1 Enthalpy and volume in phase transitions -- 3.4.1.2 DSC and DTA -- 3.4.1.3 Thermal mechanical analysis -- 3.4.2 Mechanical and Dielectric Properties -- 3.4.2.1 Changes at glass transition temperature -- 3.4.2.2 Dynamic mechanical thermal analysis and mechanical spectroscopy -- 3.4.2.3 Dielectric properties -- References -- 4 Water and phase transitions -- 4.1 Introduction -- 4.2 Properties of Water -- 4.2.1 Phase Behavior of Water -- 4.2.1.1 Phase behavior of pure water -- 4.2.1.2 Supercooled amorphous water -- 4.2.2 Water in Solutions -- 4.2.2.1 Freezing temperature depression -- 4.2.2.2 Boiling temperature elevation -- 4.2.2.3 Eutectic solutions -- 4.3 Water in Foods -- 4.3.1 Sorption Behavior -- 4.3.1.1 Sorption isotherms -- 4.3.1.2 Sorption models -- BET model -- GAB model -- 4.3.1.3 Water plasticization. , 4.3.2 Ice Formation and Freeze-Concentration -- 4.3.2.1 Equilibrium freezing -- Eutectic solutions -- Supersaturated solutions -- 4.3.2.2 Nonequilibrium freezing -- 4.3.2.3 State diagrams -- References -- 5 Food components and polymers -- 5.1 Introduction -- 5.2 Carbohydrates -- 5.2.1 Sugars -- 5.2.1.1 Melting and crystallization -- 5.2.1.2 Glass transitions -- 5.2.1.3 Mixtures of sugars -- 5.2.2 Starch -- 5.2.2.1 Physical state of native starches -- 5.2.2.2 Physical state of starch and starch components -- Starch and starch components -- Effect of composition -- 5.2.2.3 Gelatinization and melting -- Birefringence -- X-Ray diffraction -- Differential scanning calorimetry -- Effects of water on gelatinization and melting -- Effects of solutes -- 5.2.2.4 Amylose-lipid complexes -- 5.3 Proteins -- 5.3.1 Denaturation -- 5.3.2 Glass Transition -- 5.3.2.1 Physical state of proteins -- Cereal proteins -- State diagrams -- 5.4 Lipids -- 5.4.1 Polymorphic Forms -- 5.4.1.1 Calorimetric studies -- 5.4.1.2 Other techniques -- 5.4.2 Melting of Fats and Oils -- 5.4.2.1 Melting behavior of fats and oils -- 5.4.2.2 Solid fat content -- 5.4.3 Mechanical Properties and Crystallinity -- 5.4.3.1 Mechanical properties and firmness -- 5.4.3.2 Plasticity -- References -- 6 Prediction of the physical state -- 6.1 Introduction -- 6.2 Prediction of Plasticization -- 6.2.1 Fractional Models -- 6.2.1.1 Gordon-Taylor equation -- 6.2.1.2 Couchman-Karasz equation -- 6.2.1.3 Other equations -- Couchman-Karasz equation-exact form -- Fox equation -- Pochan-Beatty-Hinman equation -- Linear equation -- Huang equation -- 6.2.2 Modeling Glass Transitions -- 6.2.2.1 Fractional modeling of water plasticization -- 6.2.2.2 Combined models of water activity and glass transition -- 6.2.2.3 Inclusion of water sorption models -- 6.3 Mechanical Properties and Flow. , 6.3.1 Viscosity of Amorphous Foods -- 6.3.1.1 Viscosity of frozen foods -- 6.3.1.2 Viscosity of low-moisture foods -- Effect of thermal plasticization -- Effects of water plasticization -- 6.3.2 Viscoelastic Properties -- 6.3.2.1 Relaxation time and time-temperature superposition principle -- 6.3.2.2 Master curves of biologic materials -- 6.3.2.3 Effect of molecular mass -- 6.4 Stiffness -- 6.4.1 Modulus Curves of Food Materials -- 6.4.1.1 Effect of water on mechanical properties -- 6.4.1.2 Mathematical analysis of stiffness -- References -- 7 Time-dependent phenomena -- 7.1 Introduction -- 7.2 Time-Dependent Properties of the Physical State -- 7.2.1 Glass Formation -- 7.2.1.1 Glass formation from melt -- 7.2.1.2 Glass formation by solvent removal -- Dehydration -- Freezing -- Freeze-drying -- 7.2.2 Structural Relaxation Phenomena in Amorphous Foods -- 7.2.2.1 Enthalpy relaxations -- 7.2.2.2 Structural relaxation times -- 7.3 Collapse Phenomena -- 7.3.1 Stickiness and Caking -- 7.3.1.1 Stickiness -- 7.3.1.2 Caking -- 7.3.2 Collapse -- 7.3.2.1 Collapse and glass transition -- 7.3.2.2 Collapse time -- 7.3.2.3 Diffusivity -- 7.4 Crystallization and Recrystallization -- 7.4.1 Crystallization of Amorphous Sugars -- 7.4.1.1 Crystallization of amorphous sugars -- Effect of water -- Effect of temperature -- Crystallization kinetics -- 7.4.1.2 Crystallization of sugars in amorphous foods -- Low-moisture foods -- Frozen foods -- 7.4.2 Ice Formation and Recrystallization -- 7.4.2.1 Ice formation -- 7.4.2.2 Recrystallization of ice -- Recrystallization mechanisms -- Recrystallization in frozen foods -- Control of recrystallization -- 7.4.3 Retrogradation of Starch -- 7.4.3.1 Starch and starch components -- 7.4.3.2 Staling of bread -- References -- 8 Reaction kinetics -- 8.1 Introduction -- 8.2 Principles of Reaction Kinetics -- 8.2.1 Reaction Order. , 8.2.1.1 Zero-order reactions -- 8.2.1.2 First-order reactions -- 8.2.1.3 Second-order reactions -- 8.2.2 Temperature Dependence -- 8.2.2.1 Q10 approach -- 8.2.2.2 Arrhenius equation -- 8.2.2.3 WLF equation -- 8.3 Kinetics in Amorphous Foods -- 8.3.1 Low-water Foods -- 8.3.1.1 Mobility and reaction rates -- 8.3.1.2 Diffusion-limited reactions -- 8.3.1.3 Water plasticization -- 8.3.1.4 Observed kinetics -- Nonenzymatic browning -- Other changes -- 8.3.1.5 Effects of structural transformations -- Collapse -- Crystallization -- 8.3.1.6 Stability maps -- 8.3.2 Frozen Foods -- 8.3.2.1 Quality changes in frozen foods -- 8.3.2.2 Arrhenius and WLF kinetics -- References -- 9 Food processing and storage -- 9.1 Introduction -- 9.2 Food Processing -- 9.2.1 Dehydration and Agglomeration -- 9.2.1.1 Quality changes in dehydration -- 9.2.1.2 Flavor retention and encapsulation -- 9.2.1.3 Agglomeration -- 9.2.1.4 Size reduction -- 9.2.2 Melt Processing and Extrusion -- 9.2.2.1 Plasticization and melting -- 9.2.2.2 Structural properties -- 9.2.2.3 Flavor encapsulation -- 9.3 Food Formulation and Storage -- 9.3.1 Stability and Its Prediction -- 9.3.1.1 Low-water foods -- 9.3.1.2 Frozen foods -- 9.3.2 Food Formulation -- 9.3.2.1 Food composition -- Effects in food processing -- Food composition and stability -- 9.3.2.2 Application of state diagrams -- References -- Index -- Back Cover. , English
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Amsterdam, [Netherlands] :Academic Press,
    UID:
    edoccha_9960074030402883
    Format: 1 online resource (0 p.)
    Edition: Second edition.
    ISBN: 0-12-407922-9 , 0-12-408086-3
    Note: Description based upon print version of record. , Front Cover -- Phase Transitions in Foods -- Copyright Page -- Contents -- About the Authors -- Preface -- 1 Introduction to phase transitions -- 1.1 Introduction -- 1.2 Thermodynamics -- 1.2.1 Basic Terminology -- 1.2.2 First Law of Thermodynamics -- 1.2.2.1 Enthalpy -- 1.2.2.2 Heat capacity -- 1.2.3 Second Law of Thermodynamics -- 1.2.3.1 Entropy -- 1.2.3.2 Helmholtz free energy -- 1.2.3.3 Gibbs energy -- 1.3 Characterization of Phase Transitions -- 1.3.1 Phase Diagrams -- 1.3.2 Gibbs Energy of Phases -- 1.3.3 Classification of Phase Transitions -- 1.3.3.1 First-order transitions -- 1.3.3.2 Second-order and higher-order transitions -- 1.3.3.3 Effects of pressure on transition temperatures -- 1.3.4 Effects of Composition on Transition Temperatures -- 1.3.4.1 Raoult's law -- 1.3.4.2 Henry's law -- References -- 2 Physical state and molecular mobility -- 2.1 Introduction -- 2.2 Crystallization and Melting -- 2.2.1 Nucleation and Crystal Growth -- 2.2.1.1 Nucleation -- Homogeneous nucleation -- Heterogeneous nucleation -- Secondary nucleation -- 2.2.1.2 Crystal growth -- 2.3 The Physical State of Amorphous Materials -- 2.3.1 Mechanical Properties -- 2.3.1.1 Glass formation and glass transition -- 2.3.1.2 Young's modulus -- 2.3.1.3 Shear modulus -- 2.3.1.4 Storage and loss moduli -- 2.3.2 Characterization of the Physical State -- 2.3.2.1 The glassy state -- 2.3.2.2 Glass transition temperature range -- 2.3.2.3 Rubbery plateau region -- 2.3.2.4 Rubbery flow region -- 2.3.2.5 Liquid flow region -- 2.3.3 Glass Transition Theories -- 2.3.3.1 Free volume theory -- 2.3.3.2 Kinetic theory -- 2.3.3.3 Thermodynamic theory -- 2.3.3.4 Other theories -- 2.4 Molecular Mobility and Plasticization -- 2.4.1 Mechanical Properties -- 2.4.1.1 Relaxation times -- The WLF equation -- WLF constants -- 2.4.1.2 Viscosity -- 2.4.1.3 Dynamic mechanical properties. , 2.4.2 Plasticization and Molecular Weight -- 2.4.2.1 Melting temperature -- 2.4.2.2 Glass transition and molecular weight -- 2.4.2.3 Glass transitions of mixtures -- 2.4.3 Crystallization of Amorphous Compounds -- 2.4.3.1 Nucleation and crystal growth -- 2.4.3.2 Crystallization kinetics -- References -- 3 Methodology -- 3.1 Introduction -- 3.2 Determination of the Physical State and Crystallinity -- 3.2.1 Imaging Techniques -- 3.2.1.1 Optical microscopy -- 3.2.1.2 Electron microscopy -- 3.2.1.3 Atomic force microscopy -- 3.2.1.4 Magnetic resonance imaging and X-ray tomography -- 3.2.2 Diffraction Techniques -- 3.2.2.1 X-ray diffraction -- 3.2.2.2 Electron and neutron diffraction -- 3.2.3 Spectroscopic Techniques -- 3.3 Determination of Physical State and Molecular Mobility -- 3.3.1 NMR Spectroscopy -- 3.3.2 ESR Spectroscopy -- 3.3.3 Positron Annihilation Lifetime Spectroscopy -- 3.4 Determination of Transition Temperatures and Structural Relaxations -- 3.4.1 Calorimetry and Thermal Analysis -- 3.4.1.1 Enthalpy and volume in phase transitions -- 3.4.1.2 DSC and DTA -- 3.4.1.3 Thermal mechanical analysis -- 3.4.2 Mechanical and Dielectric Properties -- 3.4.2.1 Changes at glass transition temperature -- 3.4.2.2 Dynamic mechanical thermal analysis and mechanical spectroscopy -- 3.4.2.3 Dielectric properties -- References -- 4 Water and phase transitions -- 4.1 Introduction -- 4.2 Properties of Water -- 4.2.1 Phase Behavior of Water -- 4.2.1.1 Phase behavior of pure water -- 4.2.1.2 Supercooled amorphous water -- 4.2.2 Water in Solutions -- 4.2.2.1 Freezing temperature depression -- 4.2.2.2 Boiling temperature elevation -- 4.2.2.3 Eutectic solutions -- 4.3 Water in Foods -- 4.3.1 Sorption Behavior -- 4.3.1.1 Sorption isotherms -- 4.3.1.2 Sorption models -- BET model -- GAB model -- 4.3.1.3 Water plasticization. , 4.3.2 Ice Formation and Freeze-Concentration -- 4.3.2.1 Equilibrium freezing -- Eutectic solutions -- Supersaturated solutions -- 4.3.2.2 Nonequilibrium freezing -- 4.3.2.3 State diagrams -- References -- 5 Food components and polymers -- 5.1 Introduction -- 5.2 Carbohydrates -- 5.2.1 Sugars -- 5.2.1.1 Melting and crystallization -- 5.2.1.2 Glass transitions -- 5.2.1.3 Mixtures of sugars -- 5.2.2 Starch -- 5.2.2.1 Physical state of native starches -- 5.2.2.2 Physical state of starch and starch components -- Starch and starch components -- Effect of composition -- 5.2.2.3 Gelatinization and melting -- Birefringence -- X-Ray diffraction -- Differential scanning calorimetry -- Effects of water on gelatinization and melting -- Effects of solutes -- 5.2.2.4 Amylose-lipid complexes -- 5.3 Proteins -- 5.3.1 Denaturation -- 5.3.2 Glass Transition -- 5.3.2.1 Physical state of proteins -- Cereal proteins -- State diagrams -- 5.4 Lipids -- 5.4.1 Polymorphic Forms -- 5.4.1.1 Calorimetric studies -- 5.4.1.2 Other techniques -- 5.4.2 Melting of Fats and Oils -- 5.4.2.1 Melting behavior of fats and oils -- 5.4.2.2 Solid fat content -- 5.4.3 Mechanical Properties and Crystallinity -- 5.4.3.1 Mechanical properties and firmness -- 5.4.3.2 Plasticity -- References -- 6 Prediction of the physical state -- 6.1 Introduction -- 6.2 Prediction of Plasticization -- 6.2.1 Fractional Models -- 6.2.1.1 Gordon-Taylor equation -- 6.2.1.2 Couchman-Karasz equation -- 6.2.1.3 Other equations -- Couchman-Karasz equation-exact form -- Fox equation -- Pochan-Beatty-Hinman equation -- Linear equation -- Huang equation -- 6.2.2 Modeling Glass Transitions -- 6.2.2.1 Fractional modeling of water plasticization -- 6.2.2.2 Combined models of water activity and glass transition -- 6.2.2.3 Inclusion of water sorption models -- 6.3 Mechanical Properties and Flow. , 6.3.1 Viscosity of Amorphous Foods -- 6.3.1.1 Viscosity of frozen foods -- 6.3.1.2 Viscosity of low-moisture foods -- Effect of thermal plasticization -- Effects of water plasticization -- 6.3.2 Viscoelastic Properties -- 6.3.2.1 Relaxation time and time-temperature superposition principle -- 6.3.2.2 Master curves of biologic materials -- 6.3.2.3 Effect of molecular mass -- 6.4 Stiffness -- 6.4.1 Modulus Curves of Food Materials -- 6.4.1.1 Effect of water on mechanical properties -- 6.4.1.2 Mathematical analysis of stiffness -- References -- 7 Time-dependent phenomena -- 7.1 Introduction -- 7.2 Time-Dependent Properties of the Physical State -- 7.2.1 Glass Formation -- 7.2.1.1 Glass formation from melt -- 7.2.1.2 Glass formation by solvent removal -- Dehydration -- Freezing -- Freeze-drying -- 7.2.2 Structural Relaxation Phenomena in Amorphous Foods -- 7.2.2.1 Enthalpy relaxations -- 7.2.2.2 Structural relaxation times -- 7.3 Collapse Phenomena -- 7.3.1 Stickiness and Caking -- 7.3.1.1 Stickiness -- 7.3.1.2 Caking -- 7.3.2 Collapse -- 7.3.2.1 Collapse and glass transition -- 7.3.2.2 Collapse time -- 7.3.2.3 Diffusivity -- 7.4 Crystallization and Recrystallization -- 7.4.1 Crystallization of Amorphous Sugars -- 7.4.1.1 Crystallization of amorphous sugars -- Effect of water -- Effect of temperature -- Crystallization kinetics -- 7.4.1.2 Crystallization of sugars in amorphous foods -- Low-moisture foods -- Frozen foods -- 7.4.2 Ice Formation and Recrystallization -- 7.4.2.1 Ice formation -- 7.4.2.2 Recrystallization of ice -- Recrystallization mechanisms -- Recrystallization in frozen foods -- Control of recrystallization -- 7.4.3 Retrogradation of Starch -- 7.4.3.1 Starch and starch components -- 7.4.3.2 Staling of bread -- References -- 8 Reaction kinetics -- 8.1 Introduction -- 8.2 Principles of Reaction Kinetics -- 8.2.1 Reaction Order. , 8.2.1.1 Zero-order reactions -- 8.2.1.2 First-order reactions -- 8.2.1.3 Second-order reactions -- 8.2.2 Temperature Dependence -- 8.2.2.1 Q10 approach -- 8.2.2.2 Arrhenius equation -- 8.2.2.3 WLF equation -- 8.3 Kinetics in Amorphous Foods -- 8.3.1 Low-water Foods -- 8.3.1.1 Mobility and reaction rates -- 8.3.1.2 Diffusion-limited reactions -- 8.3.1.3 Water plasticization -- 8.3.1.4 Observed kinetics -- Nonenzymatic browning -- Other changes -- 8.3.1.5 Effects of structural transformations -- Collapse -- Crystallization -- 8.3.1.6 Stability maps -- 8.3.2 Frozen Foods -- 8.3.2.1 Quality changes in frozen foods -- 8.3.2.2 Arrhenius and WLF kinetics -- References -- 9 Food processing and storage -- 9.1 Introduction -- 9.2 Food Processing -- 9.2.1 Dehydration and Agglomeration -- 9.2.1.1 Quality changes in dehydration -- 9.2.1.2 Flavor retention and encapsulation -- 9.2.1.3 Agglomeration -- 9.2.1.4 Size reduction -- 9.2.2 Melt Processing and Extrusion -- 9.2.2.1 Plasticization and melting -- 9.2.2.2 Structural properties -- 9.2.2.3 Flavor encapsulation -- 9.3 Food Formulation and Storage -- 9.3.1 Stability and Its Prediction -- 9.3.1.1 Low-water foods -- 9.3.1.2 Frozen foods -- 9.3.2 Food Formulation -- 9.3.2.1 Food composition -- Effects in food processing -- Food composition and stability -- 9.3.2.2 Application of state diagrams -- References -- Index -- Back Cover. , English
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Amsterdam, [Netherlands] :Academic Press,
    UID:
    almahu_9948025863102882
    Format: 1 online resource (0 p.)
    Edition: Second edition.
    ISBN: 0-12-407922-9 , 0-12-408086-3
    Note: Description based upon print version of record. , Front Cover -- Phase Transitions in Foods -- Copyright Page -- Contents -- About the Authors -- Preface -- 1 Introduction to phase transitions -- 1.1 Introduction -- 1.2 Thermodynamics -- 1.2.1 Basic Terminology -- 1.2.2 First Law of Thermodynamics -- 1.2.2.1 Enthalpy -- 1.2.2.2 Heat capacity -- 1.2.3 Second Law of Thermodynamics -- 1.2.3.1 Entropy -- 1.2.3.2 Helmholtz free energy -- 1.2.3.3 Gibbs energy -- 1.3 Characterization of Phase Transitions -- 1.3.1 Phase Diagrams -- 1.3.2 Gibbs Energy of Phases -- 1.3.3 Classification of Phase Transitions -- 1.3.3.1 First-order transitions -- 1.3.3.2 Second-order and higher-order transitions -- 1.3.3.3 Effects of pressure on transition temperatures -- 1.3.4 Effects of Composition on Transition Temperatures -- 1.3.4.1 Raoult's law -- 1.3.4.2 Henry's law -- References -- 2 Physical state and molecular mobility -- 2.1 Introduction -- 2.2 Crystallization and Melting -- 2.2.1 Nucleation and Crystal Growth -- 2.2.1.1 Nucleation -- Homogeneous nucleation -- Heterogeneous nucleation -- Secondary nucleation -- 2.2.1.2 Crystal growth -- 2.3 The Physical State of Amorphous Materials -- 2.3.1 Mechanical Properties -- 2.3.1.1 Glass formation and glass transition -- 2.3.1.2 Young's modulus -- 2.3.1.3 Shear modulus -- 2.3.1.4 Storage and loss moduli -- 2.3.2 Characterization of the Physical State -- 2.3.2.1 The glassy state -- 2.3.2.2 Glass transition temperature range -- 2.3.2.3 Rubbery plateau region -- 2.3.2.4 Rubbery flow region -- 2.3.2.5 Liquid flow region -- 2.3.3 Glass Transition Theories -- 2.3.3.1 Free volume theory -- 2.3.3.2 Kinetic theory -- 2.3.3.3 Thermodynamic theory -- 2.3.3.4 Other theories -- 2.4 Molecular Mobility and Plasticization -- 2.4.1 Mechanical Properties -- 2.4.1.1 Relaxation times -- The WLF equation -- WLF constants -- 2.4.1.2 Viscosity -- 2.4.1.3 Dynamic mechanical properties. , 2.4.2 Plasticization and Molecular Weight -- 2.4.2.1 Melting temperature -- 2.4.2.2 Glass transition and molecular weight -- 2.4.2.3 Glass transitions of mixtures -- 2.4.3 Crystallization of Amorphous Compounds -- 2.4.3.1 Nucleation and crystal growth -- 2.4.3.2 Crystallization kinetics -- References -- 3 Methodology -- 3.1 Introduction -- 3.2 Determination of the Physical State and Crystallinity -- 3.2.1 Imaging Techniques -- 3.2.1.1 Optical microscopy -- 3.2.1.2 Electron microscopy -- 3.2.1.3 Atomic force microscopy -- 3.2.1.4 Magnetic resonance imaging and X-ray tomography -- 3.2.2 Diffraction Techniques -- 3.2.2.1 X-ray diffraction -- 3.2.2.2 Electron and neutron diffraction -- 3.2.3 Spectroscopic Techniques -- 3.3 Determination of Physical State and Molecular Mobility -- 3.3.1 NMR Spectroscopy -- 3.3.2 ESR Spectroscopy -- 3.3.3 Positron Annihilation Lifetime Spectroscopy -- 3.4 Determination of Transition Temperatures and Structural Relaxations -- 3.4.1 Calorimetry and Thermal Analysis -- 3.4.1.1 Enthalpy and volume in phase transitions -- 3.4.1.2 DSC and DTA -- 3.4.1.3 Thermal mechanical analysis -- 3.4.2 Mechanical and Dielectric Properties -- 3.4.2.1 Changes at glass transition temperature -- 3.4.2.2 Dynamic mechanical thermal analysis and mechanical spectroscopy -- 3.4.2.3 Dielectric properties -- References -- 4 Water and phase transitions -- 4.1 Introduction -- 4.2 Properties of Water -- 4.2.1 Phase Behavior of Water -- 4.2.1.1 Phase behavior of pure water -- 4.2.1.2 Supercooled amorphous water -- 4.2.2 Water in Solutions -- 4.2.2.1 Freezing temperature depression -- 4.2.2.2 Boiling temperature elevation -- 4.2.2.3 Eutectic solutions -- 4.3 Water in Foods -- 4.3.1 Sorption Behavior -- 4.3.1.1 Sorption isotherms -- 4.3.1.2 Sorption models -- BET model -- GAB model -- 4.3.1.3 Water plasticization. , 4.3.2 Ice Formation and Freeze-Concentration -- 4.3.2.1 Equilibrium freezing -- Eutectic solutions -- Supersaturated solutions -- 4.3.2.2 Nonequilibrium freezing -- 4.3.2.3 State diagrams -- References -- 5 Food components and polymers -- 5.1 Introduction -- 5.2 Carbohydrates -- 5.2.1 Sugars -- 5.2.1.1 Melting and crystallization -- 5.2.1.2 Glass transitions -- 5.2.1.3 Mixtures of sugars -- 5.2.2 Starch -- 5.2.2.1 Physical state of native starches -- 5.2.2.2 Physical state of starch and starch components -- Starch and starch components -- Effect of composition -- 5.2.2.3 Gelatinization and melting -- Birefringence -- X-Ray diffraction -- Differential scanning calorimetry -- Effects of water on gelatinization and melting -- Effects of solutes -- 5.2.2.4 Amylose-lipid complexes -- 5.3 Proteins -- 5.3.1 Denaturation -- 5.3.2 Glass Transition -- 5.3.2.1 Physical state of proteins -- Cereal proteins -- State diagrams -- 5.4 Lipids -- 5.4.1 Polymorphic Forms -- 5.4.1.1 Calorimetric studies -- 5.4.1.2 Other techniques -- 5.4.2 Melting of Fats and Oils -- 5.4.2.1 Melting behavior of fats and oils -- 5.4.2.2 Solid fat content -- 5.4.3 Mechanical Properties and Crystallinity -- 5.4.3.1 Mechanical properties and firmness -- 5.4.3.2 Plasticity -- References -- 6 Prediction of the physical state -- 6.1 Introduction -- 6.2 Prediction of Plasticization -- 6.2.1 Fractional Models -- 6.2.1.1 Gordon-Taylor equation -- 6.2.1.2 Couchman-Karasz equation -- 6.2.1.3 Other equations -- Couchman-Karasz equation-exact form -- Fox equation -- Pochan-Beatty-Hinman equation -- Linear equation -- Huang equation -- 6.2.2 Modeling Glass Transitions -- 6.2.2.1 Fractional modeling of water plasticization -- 6.2.2.2 Combined models of water activity and glass transition -- 6.2.2.3 Inclusion of water sorption models -- 6.3 Mechanical Properties and Flow. , 6.3.1 Viscosity of Amorphous Foods -- 6.3.1.1 Viscosity of frozen foods -- 6.3.1.2 Viscosity of low-moisture foods -- Effect of thermal plasticization -- Effects of water plasticization -- 6.3.2 Viscoelastic Properties -- 6.3.2.1 Relaxation time and time-temperature superposition principle -- 6.3.2.2 Master curves of biologic materials -- 6.3.2.3 Effect of molecular mass -- 6.4 Stiffness -- 6.4.1 Modulus Curves of Food Materials -- 6.4.1.1 Effect of water on mechanical properties -- 6.4.1.2 Mathematical analysis of stiffness -- References -- 7 Time-dependent phenomena -- 7.1 Introduction -- 7.2 Time-Dependent Properties of the Physical State -- 7.2.1 Glass Formation -- 7.2.1.1 Glass formation from melt -- 7.2.1.2 Glass formation by solvent removal -- Dehydration -- Freezing -- Freeze-drying -- 7.2.2 Structural Relaxation Phenomena in Amorphous Foods -- 7.2.2.1 Enthalpy relaxations -- 7.2.2.2 Structural relaxation times -- 7.3 Collapse Phenomena -- 7.3.1 Stickiness and Caking -- 7.3.1.1 Stickiness -- 7.3.1.2 Caking -- 7.3.2 Collapse -- 7.3.2.1 Collapse and glass transition -- 7.3.2.2 Collapse time -- 7.3.2.3 Diffusivity -- 7.4 Crystallization and Recrystallization -- 7.4.1 Crystallization of Amorphous Sugars -- 7.4.1.1 Crystallization of amorphous sugars -- Effect of water -- Effect of temperature -- Crystallization kinetics -- 7.4.1.2 Crystallization of sugars in amorphous foods -- Low-moisture foods -- Frozen foods -- 7.4.2 Ice Formation and Recrystallization -- 7.4.2.1 Ice formation -- 7.4.2.2 Recrystallization of ice -- Recrystallization mechanisms -- Recrystallization in frozen foods -- Control of recrystallization -- 7.4.3 Retrogradation of Starch -- 7.4.3.1 Starch and starch components -- 7.4.3.2 Staling of bread -- References -- 8 Reaction kinetics -- 8.1 Introduction -- 8.2 Principles of Reaction Kinetics -- 8.2.1 Reaction Order. , 8.2.1.1 Zero-order reactions -- 8.2.1.2 First-order reactions -- 8.2.1.3 Second-order reactions -- 8.2.2 Temperature Dependence -- 8.2.2.1 Q10 approach -- 8.2.2.2 Arrhenius equation -- 8.2.2.3 WLF equation -- 8.3 Kinetics in Amorphous Foods -- 8.3.1 Low-water Foods -- 8.3.1.1 Mobility and reaction rates -- 8.3.1.2 Diffusion-limited reactions -- 8.3.1.3 Water plasticization -- 8.3.1.4 Observed kinetics -- Nonenzymatic browning -- Other changes -- 8.3.1.5 Effects of structural transformations -- Collapse -- Crystallization -- 8.3.1.6 Stability maps -- 8.3.2 Frozen Foods -- 8.3.2.1 Quality changes in frozen foods -- 8.3.2.2 Arrhenius and WLF kinetics -- References -- 9 Food processing and storage -- 9.1 Introduction -- 9.2 Food Processing -- 9.2.1 Dehydration and Agglomeration -- 9.2.1.1 Quality changes in dehydration -- 9.2.1.2 Flavor retention and encapsulation -- 9.2.1.3 Agglomeration -- 9.2.1.4 Size reduction -- 9.2.2 Melt Processing and Extrusion -- 9.2.2.1 Plasticization and melting -- 9.2.2.2 Structural properties -- 9.2.2.3 Flavor encapsulation -- 9.3 Food Formulation and Storage -- 9.3.1 Stability and Its Prediction -- 9.3.1.1 Low-water foods -- 9.3.1.2 Frozen foods -- 9.3.2 Food Formulation -- 9.3.2.1 Food composition -- Effects in food processing -- Food composition and stability -- 9.3.2.2 Application of state diagrams -- References -- Index -- Back Cover. , English
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9780124080881?
Did you mean 9780124080607?
Did you mean 9780124080669?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages