UID:
almafu_9960073715802883
Format:
1 online resource (471 p.)
ISBN:
9780124104419
,
012410441X
,
9780124096059
,
0124096050
Note:
Description based upon print version of record.
,
Front Cover -- Structural Health Monitoring of Aerospace Composites -- Copyright Page -- Dedication -- Contents -- 1 Introduction -- 1.1 Preamble -- 1.2 Why Aerospace Composites? -- 1.3 What are Aerospace Composites? -- 1.3.1 Definition of Aerospace Composites -- 1.3.2 High-Performance Fibers for Aerospace Composites Applications -- 1.3.3 High-Performance Matrices for Aerospace Composites Applications -- 1.3.4 Advantages of Composites in Aerospace Usage -- 1.3.5 Fabrication of Aerospace Composites -- 1.4 Evolution of Aerospace Composites -- 1.4.1 Early Advances -- 1.4.2 Composite Growth in the 1960s and 1970s -- 1.4.3 Composites Growth Since the 1980s -- 1.5 Today's Aerospace Composites -- 1.5.1 Boeing 787 Dreamliner -- 1.5.2 Airbus A350 XWB -- 1.6 Challenges for Aerospace Composites -- 1.6.1 Concerns About the Aerospace Use of Composites -- 1.6.2 The November 2001 Accident of AA Flight 587 -- 1.6.3 Fatigue Behavior of Composite Materials -- 1.6.4 The Future of Composites in Aerospace -- 1.7 About This Book -- References -- 2 Fundamentals of Aerospace Composite Materials -- 2.1 Introduction -- 2.2 Anisotropic Elasticity -- 2.2.1 Basic Notations -- 2.2.2 Stresses-The Stress Tensor -- 2.2.3 Strain-Displacement Relations-The Strain Tensor -- 2.2.4 Stress-Strain Relations -- 2.2.4.1 Stiffness Tensor -- Compliance Tensor -- 2.2.4.2 From Tensor Notations to Voigt Matrix Notation -- 2.2.4.3 Stiffness Matrix -- 2.2.4.4 Compliance Matrix -- 2.2.4.5 Stress-Strain Relations for an Isotropic Material -- 2.2.5 Equation of Motion in Terms of Stresses -- 2.2.6 Equation of Motion in Terms of Displacements -- 2.3 Unidirectional Composite Properties -- 2.3.1 Elastic Constants of a Unidirectional Composite -- 2.3.2 Compliance Matrix of a Unidirectional Composite -- 2.3.3 Stiffness Matrix of a Unidirectional Composite.
,
2.3.4 Estimation of Elastic Constants from the Constituent Properties -- 2.3.4.1 Estimation of the Longitudinal Modulus EL -- 2.3.4.2 Estimation of the Transverse Modulus ET -- 2.3.4.3 Estimation of Poisson Ratio νLT -- 2.3.4.4 Estimation of the LT Shear Modulus GLT -- 2.3.4.5 Estimation of Transverse Shear Modulus G23 -- 2.3.4.6 Matrix-Dominated Approximations -- 2.4 Plane-Stress 2D Elastic Properties of a Composite Layer -- 2.4.1 Plane-Stress 2D Compliance Matrix -- 2.4.2 Plane-Stress 2D Stiffness Matrix -- 2.4.3 Rotated 2D Stiffness Matrix -- 2.4.4 Rotated 2D Compliance Matrix -- 2.4.5 Proof of RTR−1=T−t -- 2.5 Fully 3D Elastic Properties of a Composite Layer -- 2.5.1 Orthotropic Stiffness Matrix -- 2.5.2 Rotated Stiffness Matrix -- 2.5.3 Equations of Motion for a Monoclinic Composite Layer -- 2.5.4 Rotated Compliance Matrix -- 2.5.5 Note on the Use of Closed-Form Expression in the C and S matrices -- 2.5.6 Proof of RTR−1=T−t in 3D -- 2.6 Problems and Exercises -- References -- 3 Vibration of Composite Structures -- 3.1 Introduction -- 3.1.1 Displacements for Axial-Flexural Vibration of Composite Plates -- 3.1.2 Stress Resultants -- 3.2 Equations of Motion in Terms of Stress Resultants -- 3.2.1 Derivation of Equations of Motion from Free Body Diagram -- 3.2.2 Derivation of Axial-Flexural Equations from Stress Equations of Motion -- 3.2.2.1 Integration of u-Equation of Motion -- 3.2.2.2 Integration of v-Equation of Motion -- 3.2.2.3 Integration of w-Equation of Motion -- 3.2.2.3.1 Calculation of Out-of-Plane Shear Resultant Nxz -- 3.2.2.3.2 Calculation of Out-of-Plane Shear Resultant Nyz -- 3.2.2.3.3 The w-Equation of Motion in Terms of Moment Stress Resultants -- 3.2.3 Summary of Equations of Motion in Terms of Stress Resultants -- 3.2.4 Strains in Terms of Displacements -- 3.2.5 Strains in Terms of Mid-Surface Strains and Curvatures.
,
3.3 Vibration Equations for an Anisotropic Laminated Composite Plate -- 3.3.1 Stress-Strain Relations for an Anisotropic Laminated Composite Plate -- 3.3.2 Stresses in Terms of Mid-Surface Strains and Curvatures for an Anisotropic Laminated Composite Plate -- 3.3.3 Stress Resultants in Terms of Mid-Surface Strains and Curvatures for an Anisotropic Laminated Composite Plate -- 3.3.3.1 Matrix Representation of Stresses and Stress Resultants -- 3.3.3.2 Stress Resultants through Stress Integration across the Thickness of an Anisotropic Laminated Composite Plate (ABD ... -- 3.3.4 Equations of Motion in Terms of Displacements for an Anisotropic Laminated Composite Plate -- 3.3.5 Vibration Frequencies and Modeshapes of an Anisotropic Laminated Composite Plate -- 3.4 Vibration Equations for an Isotropic Plate -- 3.4.1 Isotropic Stress-Strain Relations -- 3.4.2 Stresses in Terms of Mid-Surface Strains and Curvatures for an Isotropic Plate -- 3.4.3 Stress Resultants for an Isotropic Plate -- 3.4.3.1 ABD Matrices for an Isotropic Plate -- 3.4.4 Equations of Motion in Terms of Displacements for an Isotropic Plate -- 3.4.5 Vibration Frequencies and Modeshapes of an Isotropic Plate -- 3.4.5.1 Axial Vibration of an Isotropic Plate -- 3.4.5.2 Flexural Vibration of an Isotropic Plate -- 3.5 Special Cases -- 3.5.1 Symmetric Laminates -- 3.5.2 Isotropic Laminates -- 3.6 Problems and Exercises -- References -- 4 Guided Waves in Thin-Wall Composite Structures -- 4.1 Introduction -- 4.1.1 Overview -- 4.1.2 Problem Setup -- 4.1.3 State of the Art in Modeling Guided-Wave Propagation in Laminated Composites -- 4.1.4 Chapter Layout -- 4.2 Wave Propagation in Bulk Composite Material-Christoffel Equations -- 4.2.1 Equation of Motion in Terms of Displacements -- 4.2.2 Christoffel Equation for Bulk Composites -- 4.3 Guided Waves in a Composite Ply.
,
4.3.1 Guided Wave as a Superposition of Partial Waves -- 4.3.2 Coherence Condition-Generalized Snell's Law -- 4.3.3 Christoffel Equation for a Lamina -- 4.3.4 Stresses -- 4.3.4.1 Stress-Displacement Relation -- 4.3.4.2 Stress-Displacement Relations under x2-Invariant Conditions -- 4.3.4.3 Stresses in a Monoclinic Lamina under x2-Invariant Conditions -- 4.3.4.4 Boundary Tractions for a Monoclinic Lamina -- 4.3.4.5 Boundary Tractions in Terms of Wave Propagation -- 4.3.5 State Vector and Field Matrix -- 4.3.6 Dispersion Curves -- 4.3.6.1 Boundary Conditions at Upper and Lower Faces of the Lamina -- 4.3.6.2 Search for the Solution -- 4.3.6.3 Modeshapes -- 4.4 Guided-Wave Propagation in a Laminated Composite -- 4.4.1 Global Matrix Method (GMM) -- 4.4.2 Transfer Matrix Method (TMM) -- 4.4.3 Stiffness Matrix Method (SMM) -- 4.5 Numerical Computation -- 4.6 Problems and Exercises -- References -- 5 Damage and Failure of Aerospace Composites -- 5.1 Introduction -- 5.2 Composites Damage and Failure Mechanisms -- 5.2.1 Fiber and Matrix Stress-Strain Curves -- 5.2.2 Failure Modes in Unidirectional Fiber-Reinforced Composites -- 5.3 Tension Damage and Failure of a Unidirectional Composite Ply -- 5.3.1 Strain-Controlled Tension Failure due to Fracture of the Fibers -- 5.3.2 Statistical Effects on Unidirectional Composite Strength and Failure -- 5.3.3 Shear-Lag Load Sharing between Broken Fibers -- 5.3.4 Fiber Pullout -- 5.4 Tension Damage and Failure in a Cross-Ply Composite Laminate -- 5.4.1 Ply Discount Method -- 5.4.2 Progressive Failure of a Cross-Ply Laminate -- 5.4.3 Interfacial Stresses at Laminate Edges and Cracks -- 5.4.4 Effect of Matrix Cracking on Interlaminar Stresses -- 5.5 Characteristic Damage State (CDS) -- 5.5.1 Definition of the Characteristic Damage State -- 5.5.2 Damage Modes That Modify Local Stress Distribution.
,
5.5.3 Stiffness Evolution with Damage Accumulation -- 5.6 Fatigue Damage in Aerospace Composites -- 5.6.1 Fatigue of Unidirectional Composites -- 5.6.2 Fatigue of Cross-Ply Composite Laminate -- 5.7 Long-Term Fatigue Behavior of Aerospace Composites -- 5.7.1 Damage Region I-Progression toward Widespread CDS -- 5.7.2 Damage Region II-Crack Coupling and Delamination -- 5.7.2.1 Edge Cracks versus Internal Cracks -- 5.7.2.2 Comparison between Region I and Region II -- 5.7.2.2.1 Phenomenological Comparison -- 5.7.2.2.2 Stress-Distribution Comparison -- 5.7.3 Damage Region III-Damage Acceleration and Final Failure -- 5.7.3.1 Stiffness-Damage Correlation in Region III toward Composite End of Life -- 5.7.3.2 Role of Fiber Fracture in Final Failure -- 5.7.4 Summary of Long-Term Fatigue Behavior of Composites -- 5.8 Compression Fatigue Damage and Failure in Aerospace Composites -- 5.8.1 Compression Fatigue Delamination Damage -- 5.8.2 Compression Fatigue Local Microbuckling Damage -- 5.8.3 Compression Fatigue Damage under Combined Tension-Compression Loading -- 5.9 Other Composite Damage Types -- 5.9.1 Fastener Hole Damage in Composites -- 5.9.2 Impact Damage in Composites -- 5.9.3 Composite Sandwich Damage -- 5.9.3.1 Skin Damage -- 5.9.3.2 Interface Damage -- 5.9.3.3 Core Damage -- 5.9.4 Damage in Adhesive Composite Joints -- 5.10 Fabrication Defects versus In-service Damage -- 5.10.1 Fabrication Defects -- 5.10.2 In-service Damage -- 5.11 What Could SHM Systems Aim to Detect? -- 5.12 Summary and Conclusions -- References -- 6 Piezoelectric Wafer Active Sensors -- 6.1 Introduction -- 6.1.1 SMART Layer™ and SMART Suitcase™ -- 6.1.2 Advantages of PWAS Transducers -- 6.2 PWAS Construction and Operational Principles -- 6.3 Coupling Between the PWAS Transducer and the Monitored Structure -- 6.3.1 1D Analysis of PWAS Coupling.
,
6.3.1.1 Shear-Lag Solution for 1D Coupling.
,
English
Language:
English
Bookmarklink