Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1
    UID:
    almafu_9960073682302883
    Umfang: 1 online resource (529 p.)
    Ausgabe: 1st edition
    ISBN: 9786613288271 , 9781283288279 , 1283288273 , 9780124160323 , 0124160328
    Inhalt: An excellent reference for anyone needing to examine properties of harmonic vector fields to help them solve research problems. The book provides the main results of harmonic vector ?elds with an emphasis on Riemannian manifolds using past and existing problems to assist you in analyzing and furnishing your own conclusion for further research. It emphasizes a combination of theoretical development with practical applications for a solid treatment of the subject useful to those new to research using differential geometric methods in extensive detail. A useful tool for any
    Anmerkung: Description based upon print version of record. , Front Cover; Harmonic Vector Fields: Variational Principles and Differential Geometry; Copyright; Table of Contents; Preface; Chapter 1 Geometry of the Tangent Bundle; 1.1. The Tangent Bundle; 1.2. Connections and Horizontal Vector Fields; 1.3. The Dombrowski Map and the Sasaki Metric; 1.3.1. Preliminaries on Local Calculations; 1.3.2. Isotropic Almost Complex Structures; 1.3.3. Invariant Isotropic Complex Structures; 1.4. The Tangent Sphere Bundle; 1.5. The Tangent Sphere Bundle over a Torus; Chapter 2 Harmonic Vector Fields; 2.1. Vector Fields as Isometric Immersions , 2.2. The Energy of a Vector Field2.3. Vector Fields Which Are Harmonic Maps; 2.4. The Tension of a Vector Field; 2.5. Variations through Vector Fields; 2.6. Unit Vector Fields; 2.7. The Second Variation of the Energy Function; 2.8. Unboundedness of the Energy Functional; 2.9. The Dirichlet Problem; 2.9.1. The Graham-Lee Connection; 2.9.2. The Levi-Civita Connection of the Bergman Metric; 2.9.3. Proof of Theorem 2.36; 2.9.4. Proof of Theorem 2.37; 2.9.5. Final Comments; 2.10. Conformal Change of Metric on the Torus; 2.11. Sobolev Spaces of Vector Fields; Chapter 3 Harmonicity and Stability , 3.1. Hopf Vector Fields on Spheres3.2. The Energy of Unit Killing Fields in Dimension 3; 3.3. Instability of Hopf Vector Fields; 3.4. Existence of Minima in Dimension 〉 3; 3.5. Brito's Functional; 3.6. The Brito Energy of the Reeb Vector; 3.7. Vector Fields with Singularities; 3.7.1. Geodesic Distance; 3.7.2. F. Brito & P.G. Walczak's Theorem; 3.7.3. Harmonic Radial Vector Fields; 3.8. Normal Vector Fields on Principal Orbits; 3.9. Riemannian Tori; 3.9.1. Harmonic Vector Fields on Riemannian Tori; 3.9.2. Stability; 3.9.3. Examples and Open Problems , Chapter 4 Harmonicity and Contact Metric Structures4.1. H-Contact Manifolds; 4.1.1. Contact Metric Manifolds; 4.1.2. H-Contact Manifolds; 4.2. Three-Dimensional H-Contact Manifolds; 4.2.1. A Characterization of H-Contact Three-Manifolds and New Examples; 4.2.2. Taut Contact Circles and H-Contact Structures; 4.3. Stability of the Reeb Vector Field; 4.3.1. Stability of ? for Sasakian 3-Manifolds and Generalized (k,μ)-Spaces; 4.3.2. Stability of Strongly Normal Reeb Vector Fields; 4.4. Harmonic Almost Contact Structures; 4.5. Reeb Vector Fields on Real Hypersurfaces , 4.5.1. The Rough Laplacian and Criteria of Harmonicity4.5.2. Ruled Hypersurfaces; 4.5.3. Real Hypersurfaces of Contact Type; 4.6. Harmonicity and Stability of the Geodesic Flow; 4.6.1. The Ricci Curvature; 4.6.2. H-Contact Tangent Sphere Bundles; 4.6.3. The Stability of the Geodesic Flow; Chapter 5 Harmonicity with Respect to g-Natural Metrics; 5.1. g-Natural Metrics; 5.1.1. Generalized Cheeger-Gromoll Metrics; 5.1.2. g-Natural Riemannian Metrics on S?(M); 5.2. Naturally Harmonic Vector Fields; 5.2.1. The Energy of V : (M,g) -〉 (T(M), G); 5.2.2. The Tension Field of V : (M,g) -〉 (T(M),G) , 5.2.3. Naturally Harmonic Vector Fields , English
    Weitere Ausg.: ISBN 9780124158269
    Weitere Ausg.: ISBN 0124158269
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    New York : Academic Press
    UID:
    gbv_1653240148
    Umfang: Online Ressource (xiv, 508 pages)
    Ausgabe: Online-Ausg. Online Ressource
    ISBN: 9780124158269 , 9781283288279 , 1283288273 , 0124160328 , 9780124160323
    Inhalt: An excellent reference for anyone needing to examine properties of harmonic vector fields to help them solve research problems. The book provides the main results of harmonic vector fields with an emphasis on Riemannian manifolds using past and existing problems to assist you in analyzing and furnishing your own conclusion for further research. It emphasizes a combination of theoretical development with practical applications for a solid treatment of the subject useful to those new to research using differential geometric methods in extensive detail. A useful tool for any scientist conducting research in the field of harmonic analysis Provides applications and modern techniques to problem solving A clear and concise exposition of differential geometry of harmonic vector fields on Reimannian manifolds Physical Applications of Geometric Methods
    Anmerkung: Includes bibliographical references and index. - Print version record , Includes bibliographical references (p. 491-503) and index , Front Cover; Harmonic Vector Fields: Variational Principles and Differential Geometry; Copyright; Table of Contents; Preface; Chapter 1 Geometry of the Tangent Bundle; 1.1. The Tangent Bundle; 1.2. Connections and Horizontal Vector Fields; 1.3. The Dombrowski Map and the Sasaki Metric; 1.3.1. Preliminaries on Local Calculations; 1.3.2. Isotropic Almost Complex Structures; 1.3.3. Invariant Isotropic Complex Structures; 1.4. The Tangent Sphere Bundle; 1.5. The Tangent Sphere Bundle over a Torus; Chapter 2 Harmonic Vector Fields; 2.1. Vector Fields as Isometric Immersions , 2.2. The Energy of a Vector Field2.3. Vector Fields Which Are Harmonic Maps; 2.4. The Tension of a Vector Field; 2.5. Variations through Vector Fields; 2.6. Unit Vector Fields; 2.7. The Second Variation of the Energy Function; 2.8. Unboundedness of the Energy Functional; 2.9. The Dirichlet Problem; 2.9.1. The Graham-Lee Connection; 2.9.2. The Levi-Civita Connection of the Bergman Metric; 2.9.3. Proof of Theorem 2.36; 2.9.4. Proof of Theorem 2.37; 2.9.5. Final Comments; 2.10. Conformal Change of Metric on the Torus; 2.11. Sobolev Spaces of Vector Fields; Chapter 3 Harmonicity and Stability , 3.1. Hopf Vector Fields on Spheres3.2. The Energy of Unit Killing Fields in Dimension 3; 3.3. Instability of Hopf Vector Fields; 3.4. Existence of Minima in Dimension 〉 3; 3.5. Brito's Functional; 3.6. The Brito Energy of the Reeb Vector; 3.7. Vector Fields with Singularities; 3.7.1. Geodesic Distance; 3.7.2. F. Brito & P.G. Walczak's Theorem; 3.7.3. Harmonic Radial Vector Fields; 3.8. Normal Vector Fields on Principal Orbits; 3.9. Riemannian Tori; 3.9.1. Harmonic Vector Fields on Riemannian Tori; 3.9.2. Stability; 3.9.3. Examples and Open Problems , Chapter 4 Harmonicity and Contact Metric Structures4.1. H-Contact Manifolds; 4.1.1. Contact Metric Manifolds; 4.1.2. H-Contact Manifolds; 4.2. Three-Dimensional H-Contact Manifolds; 4.2.1. A Characterization of H-Contact Three-Manifolds and New Examples; 4.2.2. Taut Contact Circles and H-Contact Structures; 4.3. Stability of the Reeb Vector Field; 4.3.1. Stability of ? for Sasakian 3-Manifolds and Generalized (k,µ)-Spaces; 4.3.2. Stability of Strongly Normal Reeb Vector Fields; 4.4. Harmonic Almost Contact Structures; 4.5. Reeb Vector Fields on Real Hypersurfaces , 4.5.1. The Rough Laplacian and Criteria of Harmonicity4.5.2. Ruled Hypersurfaces; 4.5.3. Real Hypersurfaces of Contact Type; 4.6. Harmonicity and Stability of the Geodesic Flow; 4.6.1. The Ricci Curvature; 4.6.2. H-Contact Tangent Sphere Bundles; 4.6.3. The Stability of the Geodesic Flow; Chapter 5 Harmonicity with Respect to g-Natural Metrics; 5.1. g-Natural Metrics; 5.1.1. Generalized Cheeger-Gromoll Metrics; 5.1.2. g-Natural Riemannian Metrics on S?(M); 5.2. Naturally Harmonic Vector Fields; 5.2.1. The Energy of V : (M,g) -〉 (T(M), G); 5.2.2. The Tension Field of V : (M,g) -〉 (T(M),G) , 5.2.3. Naturally Harmonic Vector Fields
    Weitere Ausg.: ISBN 9780124158269
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe Dragomir, Sorin, 1955 - Harmonic vector fields Amsterdam : Elsevier, 2012 ISBN 0124158269
    Weitere Ausg.: ISBN 9780124158269
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Electronic books
    Mehr zum Autor: Dragomir, Sorin 1955-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    b3kat_BV039830067
    Umfang: 1 Online-Ressource (xiv, 508 p.) , 24 cm
    Ausgabe: Online-Ausgabe Amsterdam Elsevier Science & Technology605 L
    Ausgabe: Online-Ausgabe
    ISBN: 9780124158269 , 0124158269 , 0124160328 , 9780124160323
    Anmerkung: An excellent reference for anyone needing to examine properties of harmonic vector fields to help them solve research problems. The book provides the main results of harmonic vector fields with an emphasis on Riemannian manifolds using past and existing problems to assist you in analyzing and furnishing your own conclusion for further research. It emphasizes a combination of theoretical development with practical applications for a solid treatment of the subject useful to those new to research using differential geometric methods in extensive detail. A useful tool for any scientist conducting research in the field of harmonic analysis Provides applications and modern techniques to problem solving A clear and concise exposition of differential geometry of harmonic vector fields on Reimannian manifolds Physical Applications of Geometric Methods , Chapter 1: Geometry of Tangent Bundle Chapter 2: Harmonic Vector Fields Chapter 3: Harmonicity and Stability Chapter 4: Harmonicity and Contact Metric Structures Chapter 5: Harmonicity with Respect to G-Natural Metrics Chapter 6: The Energy of Sections Chapter 7: Harmonic Vector Fields in CR Geometry Chapter 8: Lorentz Geometry and Harmonic Vector Fields Appendix A: Twisted Cohomologies Appendix B: The Stokes Theorem on Complete Manifolds Appendix C: Complex Monge-Ampere Equations Appendix D: Exceptional Orbits of Highest Dimension Appendix E: Reilly's Formula Bibliography Index , Includes bibliographical references and index
    Weitere Ausg.: Reproduktion von Dragomir, Sorin, 1955- Harmonic vector fields c2012
    Sprache: Englisch
    Schlagwort(e): Differentialgeometrie ; Harmonische Abbildung ; Variationsprinzip ; Vektorfeld
    Mehr zum Autor: Dragomir, Sorin 1955-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780124158252?
Meinten Sie 9780124158207?
Meinten Sie 9780124158467?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz