Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Years
Subjects(RVK)
Access
  • 1
    Online Resource
    Online Resource
    Waltham, Massachusetts ; : Butterworth-Heinemann,
    UID:
    almahu_9948320665402882
    Format: 1 online resource (649 pages) : , illustrations
    ISBN: 9780128009109 (e-book)
    Additional Edition: Print version: Qian, Ma. Titanium powder metallurgy : science, technology and applications. Waltham, Massachusetts ; Oxford, England : Butterworth-Heinemann, c2015 ISBN 9780128000540
    Language: English
    Keywords: Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    b3kat_BV042502272
    Format: XVI, 628 S. , Ill., graph. Darst.
    Edition: First edition
    ISBN: 9780128000540
    Note: Includes bibliographical references and index
    Language: English
    Subjects: Engineering
    RVK:
    Keywords: Pulvermetallurgie
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Waltham, Massachusetts ; : Butterworth-Heinemann,
    UID:
    edoccha_9960073677602883
    Format: 1 online resource (649 p.)
    Edition: 1st ed.
    ISBN: 0-12-800910-1
    Content: Titanium Powder Metallurgy contains the most comprehensive and authoritative information for, and understanding of, all key issues of titanium powder metallurgy (Ti PM). It summarizes the past, reviews the present and discusses the future of the science and technology of Ti PM while providing the world titanium community with a unique and comprehensive book covering all important aspects of titanium powder metallurgy, including powder production, powder processing, green shape formation, consolidation, property evaluation, current industrial applications and future developments. It documents
    Note: Description based upon print version of record. , Cover; Title page; Copyright Page; Contents; List of contributors; About the editors; Preface; 1 - A historical perspective of titanium powder metallurgy; 1.1 - Introduction; 1.2 - The early years (late 1940s to early 1950s); 1.3 - The 1980 TMS Conference; 1.4 - Developments 1980-present; 1.5 - Developments in the PA/HIP technology; 1.6 - The BE method; 1.7 - Metal injection molding; 1.8 - Additive manufacturing; 1.9 - Other developments; 1.10 - Research-based processes; 1.11 - The 2011 conference on titanium PM; 1.12 - Thoughts for the future; Acknowledgments; References , 2 - Conventional titanium powder production2.1 - Introduction; 2.2 - Prealloyed spherical powder (conventional titanium powder production); 2.3 - Gas atomization; 2.4 - Plasma rotating electrode process; 2.5 - Electrode induction-melting gas atomization; 2.6 - Plasma atomization; 2.7 - Induction plasma spheroidization; 2.8 - Conclusions; References; 3 - Production of titanium powder by an electrolytic method and compaction of the powder; 3.1 - Introduction; 3.2 - New and advanced processing; 3.3 - Electrolytic production of titanium powder; 3.4 - Titanium alloy powder , 3.5 - Compaction of electrolytically produced titanium powderReferences; 4 - Titanium powder production via the Metalysis process; 4.1 - Introduction; 4.2 - FFC® process overview; 4.3 - Preforms: evolution to elimination; 4.4 - Titanium alloys via the FFC® process; 4.5 - Metalysis titanium powder characterization; 4.6 - Additive manufacturing (AM); 4.7 - Hot isostatic pressing; 4.8 - Spark plasma sintering (SPS) and hot rolling; 4.9 - Summary; Acknowledgments; References; 5 - Direct titanium powder production by metallothermic processes; 5.1 - Introduction; 5.2 - Precursors , 5.3 - Reducing agents5.4 - Reactor type; 5.5 - Separation principle; 5.6 - Recent developments; 5.7 - Concluding remarks; References; 6 - Research-based titanium powder metallurgy processes; 6.1 - Introduction; 6.2 - Rapid solidification, mechanical alloying, and vapor deposition; 6.3 - Thermohydrogen processing (THP); 6.4 - Porous structures; Acknowledgments; References; 7 - Titanium powders from the hydride-dehydride process; 7.1 - Introduction; 7.2 - HDH titanium feedstock; 7.3 - The HDH process; 7.3.1 - Process background; 7.4 - The hydriding process; 7.4.1 - Furnace seals and leaks , 7.4.2 - Hydriding7.4.3 - Preparing to size hydride; 7.4.4 - Sizing of hydride; 7.5 - The dehydriding process; 7.6 - Dehydride recovery; 7.7 - Magnetic separation and acid washing; 7.8 - Interstitial contents; 7.9 - Screening and screen specifications; 7.10 - Laser specifications; 7.11 - Powder morphologies; 7.12 - Spherical powders; 7.13 - Summary; References; 8 - Low-cost titanium hydride powder metallurgy; 8.1 - Introduction; 8.2 - Titanium hydride: physical and mechanical properties and phase transformations upon heating; 8.3 - Surface contamination of titanium hydride powder , 8.4 - PM processing of CP Ti , English
    Additional Edition: ISBN 1-322-96310-X
    Additional Edition: ISBN 0-12-800054-6
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Waltham, Massachusetts ; : Butterworth-Heinemann,
    UID:
    edocfu_9960073677602883
    Format: 1 online resource (649 p.)
    Edition: 1st ed.
    ISBN: 0-12-800910-1
    Content: Titanium Powder Metallurgy contains the most comprehensive and authoritative information for, and understanding of, all key issues of titanium powder metallurgy (Ti PM). It summarizes the past, reviews the present and discusses the future of the science and technology of Ti PM while providing the world titanium community with a unique and comprehensive book covering all important aspects of titanium powder metallurgy, including powder production, powder processing, green shape formation, consolidation, property evaluation, current industrial applications and future developments. It documents
    Note: Description based upon print version of record. , Cover; Title page; Copyright Page; Contents; List of contributors; About the editors; Preface; 1 - A historical perspective of titanium powder metallurgy; 1.1 - Introduction; 1.2 - The early years (late 1940s to early 1950s); 1.3 - The 1980 TMS Conference; 1.4 - Developments 1980-present; 1.5 - Developments in the PA/HIP technology; 1.6 - The BE method; 1.7 - Metal injection molding; 1.8 - Additive manufacturing; 1.9 - Other developments; 1.10 - Research-based processes; 1.11 - The 2011 conference on titanium PM; 1.12 - Thoughts for the future; Acknowledgments; References , 2 - Conventional titanium powder production2.1 - Introduction; 2.2 - Prealloyed spherical powder (conventional titanium powder production); 2.3 - Gas atomization; 2.4 - Plasma rotating electrode process; 2.5 - Electrode induction-melting gas atomization; 2.6 - Plasma atomization; 2.7 - Induction plasma spheroidization; 2.8 - Conclusions; References; 3 - Production of titanium powder by an electrolytic method and compaction of the powder; 3.1 - Introduction; 3.2 - New and advanced processing; 3.3 - Electrolytic production of titanium powder; 3.4 - Titanium alloy powder , 3.5 - Compaction of electrolytically produced titanium powderReferences; 4 - Titanium powder production via the Metalysis process; 4.1 - Introduction; 4.2 - FFC® process overview; 4.3 - Preforms: evolution to elimination; 4.4 - Titanium alloys via the FFC® process; 4.5 - Metalysis titanium powder characterization; 4.6 - Additive manufacturing (AM); 4.7 - Hot isostatic pressing; 4.8 - Spark plasma sintering (SPS) and hot rolling; 4.9 - Summary; Acknowledgments; References; 5 - Direct titanium powder production by metallothermic processes; 5.1 - Introduction; 5.2 - Precursors , 5.3 - Reducing agents5.4 - Reactor type; 5.5 - Separation principle; 5.6 - Recent developments; 5.7 - Concluding remarks; References; 6 - Research-based titanium powder metallurgy processes; 6.1 - Introduction; 6.2 - Rapid solidification, mechanical alloying, and vapor deposition; 6.3 - Thermohydrogen processing (THP); 6.4 - Porous structures; Acknowledgments; References; 7 - Titanium powders from the hydride-dehydride process; 7.1 - Introduction; 7.2 - HDH titanium feedstock; 7.3 - The HDH process; 7.3.1 - Process background; 7.4 - The hydriding process; 7.4.1 - Furnace seals and leaks , 7.4.2 - Hydriding7.4.3 - Preparing to size hydride; 7.4.4 - Sizing of hydride; 7.5 - The dehydriding process; 7.6 - Dehydride recovery; 7.7 - Magnetic separation and acid washing; 7.8 - Interstitial contents; 7.9 - Screening and screen specifications; 7.10 - Laser specifications; 7.11 - Powder morphologies; 7.12 - Spherical powders; 7.13 - Summary; References; 8 - Low-cost titanium hydride powder metallurgy; 8.1 - Introduction; 8.2 - Titanium hydride: physical and mechanical properties and phase transformations upon heating; 8.3 - Surface contamination of titanium hydride powder , 8.4 - PM processing of CP Ti , English
    Additional Edition: ISBN 1-322-96310-X
    Additional Edition: ISBN 0-12-800054-6
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Waltham, Massachusetts ; : Butterworth-Heinemann,
    UID:
    almahu_9948025969502882
    Format: 1 online resource (649 p.)
    Edition: 1st ed.
    ISBN: 0-12-800910-1
    Content: Titanium Powder Metallurgy contains the most comprehensive and authoritative information for, and understanding of, all key issues of titanium powder metallurgy (Ti PM). It summarizes the past, reviews the present and discusses the future of the science and technology of Ti PM while providing the world titanium community with a unique and comprehensive book covering all important aspects of titanium powder metallurgy, including powder production, powder processing, green shape formation, consolidation, property evaluation, current industrial applications and future developments. It documents
    Note: Description based upon print version of record. , Cover; Title page; Copyright Page; Contents; List of contributors; About the editors; Preface; 1 - A historical perspective of titanium powder metallurgy; 1.1 - Introduction; 1.2 - The early years (late 1940s to early 1950s); 1.3 - The 1980 TMS Conference; 1.4 - Developments 1980-present; 1.5 - Developments in the PA/HIP technology; 1.6 - The BE method; 1.7 - Metal injection molding; 1.8 - Additive manufacturing; 1.9 - Other developments; 1.10 - Research-based processes; 1.11 - The 2011 conference on titanium PM; 1.12 - Thoughts for the future; Acknowledgments; References , 2 - Conventional titanium powder production2.1 - Introduction; 2.2 - Prealloyed spherical powder (conventional titanium powder production); 2.3 - Gas atomization; 2.4 - Plasma rotating electrode process; 2.5 - Electrode induction-melting gas atomization; 2.6 - Plasma atomization; 2.7 - Induction plasma spheroidization; 2.8 - Conclusions; References; 3 - Production of titanium powder by an electrolytic method and compaction of the powder; 3.1 - Introduction; 3.2 - New and advanced processing; 3.3 - Electrolytic production of titanium powder; 3.4 - Titanium alloy powder , 3.5 - Compaction of electrolytically produced titanium powderReferences; 4 - Titanium powder production via the Metalysis process; 4.1 - Introduction; 4.2 - FFC® process overview; 4.3 - Preforms: evolution to elimination; 4.4 - Titanium alloys via the FFC® process; 4.5 - Metalysis titanium powder characterization; 4.6 - Additive manufacturing (AM); 4.7 - Hot isostatic pressing; 4.8 - Spark plasma sintering (SPS) and hot rolling; 4.9 - Summary; Acknowledgments; References; 5 - Direct titanium powder production by metallothermic processes; 5.1 - Introduction; 5.2 - Precursors , 5.3 - Reducing agents5.4 - Reactor type; 5.5 - Separation principle; 5.6 - Recent developments; 5.7 - Concluding remarks; References; 6 - Research-based titanium powder metallurgy processes; 6.1 - Introduction; 6.2 - Rapid solidification, mechanical alloying, and vapor deposition; 6.3 - Thermohydrogen processing (THP); 6.4 - Porous structures; Acknowledgments; References; 7 - Titanium powders from the hydride-dehydride process; 7.1 - Introduction; 7.2 - HDH titanium feedstock; 7.3 - The HDH process; 7.3.1 - Process background; 7.4 - The hydriding process; 7.4.1 - Furnace seals and leaks , 7.4.2 - Hydriding7.4.3 - Preparing to size hydride; 7.4.4 - Sizing of hydride; 7.5 - The dehydriding process; 7.6 - Dehydride recovery; 7.7 - Magnetic separation and acid washing; 7.8 - Interstitial contents; 7.9 - Screening and screen specifications; 7.10 - Laser specifications; 7.11 - Powder morphologies; 7.12 - Spherical powders; 7.13 - Summary; References; 8 - Low-cost titanium hydride powder metallurgy; 8.1 - Introduction; 8.2 - Titanium hydride: physical and mechanical properties and phase transformations upon heating; 8.3 - Surface contamination of titanium hydride powder , 8.4 - PM processing of CP Ti , English
    Additional Edition: ISBN 1-322-96310-X
    Additional Edition: ISBN 0-12-800054-6
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Amsterdam [u.a.] : Elsevier | Boston : Butterworth-Heinemann
    UID:
    b3kat_BV044391860
    Format: 1 online resource
    Edition: First edition
    ISBN: 9780128009109 , 0128009101
    Content: This book contains comprehensive and authoritative information for, and understanding of, all key issues of titanium powder metallurgy (Ti PM). It summarizes the past, reviews the present and discusses the future of the science and technology of Ti PM while providing the world titanium community with a unique and comprehensive book covering all aspects of titanium powder metallurgy, including: powder production, powder processing, green shape formation, consolidation, property evaluation, current industrial applications and future developments. It documents the fundamental understanding and technological developments achieved since 1937 and demonstrates why powder metallurgy now offers a cost-effective approach to the near net or net shape fabrication of titanium, titanium alloys and titanium metal matrix composites for a wide variety of industrial applications. --
    Note: Includes bibliographical references and index
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 978-0-12-800054-0
    Language: English
    Subjects: Engineering
    RVK:
    Keywords: Pulvermetallurgie
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9780128005040?
Did you mean 9780128000458?
Did you mean 9780128000045?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages