Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Schlagwörter
Zugriff
  • 1
    UID:
    edoccha_BV045382149
    Umfang: 1 Online-Ressource (xiv, 1160 Seiten).
    Ausgabe: Second edition
    ISBN: 978-0-12-802637-3 , 0-12-802637-5 , 978-0-12-802447-8 , 0-12-802447-X
    Inhalt: Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice, Second Edition illustrates how to develop high-quality, safe, and effective pharmaceutical products by discussing the latest techniques, tools, and scientific advances in preformulation investigation, formulation, process design, characterization, scale-up, and production operations. This book covers the essential principles of physical pharmacy, biopharmaceutics, and industrial pharmacy, and their application to the research and development process of oral dosage forms. Chapters have been added, combined, deleted, and completely revised as necessary to produce a comprehensive, well-organized, valuable reference for industry professionals and academics engaged in all aspects of the development process. New and important topics include spray drying, amorphous solid dispersion using hot-melt extrusion, modeling and simulation, bioequivalence of complex modified-released dosage forms, biowaivers, and much more
    Sprache: Englisch
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    London, [England] :Academic Press,
    UID:
    almahu_9949226245402882
    Umfang: 1 online resource (1,176 pages) : , illustrations
    Ausgabe: Second edition.
    ISBN: 9780128026373 (e-book)
    Weitere Ausg.: Print version: Developing solid oral dosage forms. London, [England] : Academic Press, c2017 ISBN 9780128024478
    Sprache: Englisch
    Schlagwort(e): Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    edocfu_BV045382149
    Umfang: 1 Online-Ressource (xiv, 1160 Seiten).
    Ausgabe: Second edition
    ISBN: 978-0-12-802637-3 , 0-12-802637-5 , 978-0-12-802447-8 , 0-12-802447-X
    Inhalt: Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice, Second Edition illustrates how to develop high-quality, safe, and effective pharmaceutical products by discussing the latest techniques, tools, and scientific advances in preformulation investigation, formulation, process design, characterization, scale-up, and production operations. This book covers the essential principles of physical pharmacy, biopharmaceutics, and industrial pharmacy, and their application to the research and development process of oral dosage forms. Chapters have been added, combined, deleted, and completely revised as necessary to produce a comprehensive, well-organized, valuable reference for industry professionals and academics engaged in all aspects of the development process. New and important topics include spray drying, amorphous solid dispersion using hot-melt extrusion, modeling and simulation, bioequivalence of complex modified-released dosage forms, biowaivers, and much more
    Sprache: Englisch
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    UID:
    almafu_BV045382149
    Umfang: 1 Online-Ressource (xiv, 1160 Seiten).
    Ausgabe: Second edition
    ISBN: 978-0-12-802637-3 , 0-12-802637-5 , 978-0-12-802447-8 , 0-12-802447-X
    Inhalt: Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice, Second Edition illustrates how to develop high-quality, safe, and effective pharmaceutical products by discussing the latest techniques, tools, and scientific advances in preformulation investigation, formulation, process design, characterization, scale-up, and production operations. This book covers the essential principles of physical pharmacy, biopharmaceutics, and industrial pharmacy, and their application to the research and development process of oral dosage forms. Chapters have been added, combined, deleted, and completely revised as necessary to produce a comprehensive, well-organized, valuable reference for industry professionals and academics engaged in all aspects of the development process. New and important topics include spray drying, amorphous solid dispersion using hot-melt extrusion, modeling and simulation, bioequivalence of complex modified-released dosage forms, biowaivers, and much more
    Sprache: Englisch
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    London, [England] :Academic Press,
    UID:
    edocfu_9960161230002883
    Umfang: 1 online resource (1,176 pages) : , illustrations
    Ausgabe: Second edition.
    Anmerkung: Front Cover -- Developing Solid Oral Dosage Forms -- Copyright Page -- Dedication -- Contents -- List of Contributors -- Foreword -- I. Theories and Techniques in the Characterization of Drug Substances and Excipients -- 1 Solubility of Pharmaceutical Solids -- 1.1 Introduction -- 1.1.1 Implication of solubility in dosage form development -- 1.1.2 Basic concepts of solubility and dissolution -- 1.1.2.1 Ionic interactions -- 1.1.2.2 van der Waals interactions -- 1.1.2.3 Dispersion interactions -- 1.1.2.4 Hydrogen bonding -- 1.2 Thermodynamics of Solutions -- 1.2.1 Volume of mixing -- 1.2.2 Enthalpy of mixing -- 1.2.3 Entropy of mixing -- 1.2.4 Free energy of mixing -- 1.3 Theoretical Estimation of Solubility -- 1.3.1 Ideal solutions -- 1.3.2 Effect of crystallinity -- 1.3.3 Nonideal solutions -- 1.3.4 Regular solution theory -- 1.3.5 Aqueous solution theory -- 1.3.6 General solubility equation -- 1.4 Solubilization of Drug Candidates -- 1.4.1 Solubility enhancement by pH control and salt formation -- 1.4.1.1 Theoretical expressions to describe pH-solubility profiles -- 1.4.2 Solubilization using complexation -- 1.4.2.1 AL-type phase diagrams -- 1.4.2.2 AP-type phase diagrams -- 1.4.2.3 BS-type phase diagrams -- 1.4.3 Solubilization by cosolvents -- 1.4.4 Solubilization by surfactants (micellar solubilization) -- 1.4.5 Solubilization by combination of approaches -- 1.4.5.1 Combined effect of ionization and cosolvency -- 1.4.5.2 Combined effect of ionization and micellization -- 1.4.5.3 Combined effect of ionization and complexation -- 1.4.5.4 Combined effect of cosolvency and complexation -- 1.4.5.5 Combined effect of complexation and micellar solubilization -- 1.5 Experimental Determination of Solubility -- 1.5.1 Stability of solute and solvent -- 1.5.2 Shakers and containers -- 1.5.3 Presence of excess undissolved solute. , 1.5.4 Determination of equilibrium -- 1.5.5 Phase separation -- 1.5.6 Determination of solute content in the dissolved phase -- 1.5.7 Experimental conditions -- References -- 2 Crystalline and Amorphous Solids -- 2.1 Introduction -- 2.2 Definitions and Categorization of Solids -- 2.3 Thermodynamics and Phase Diagrams -- 2.3.1 Polymorphs -- 2.3.1.1 Enantiotropy and monotropy -- 2.3.1.2 Methods of determining stability relationships between polymorphs -- 2.3.1.2.1 Quantitative methods -- 2.3.1.2.1.1 Using heat of fusion data -- 2.3.1.2.1.2 Using eutectic fusion data -- 2.3.1.2.1.3 Using solubility/intrinsic dissolution rate data -- 2.3.1.2.1.4 Using solubility/intrinsic dissolution rate and heat of solution data -- 2.3.1.2.2 Qualitative methods -- 2.3.1.2.2.1 Using the definition -- 2.3.1.2.2.2 Using the heat of fusion rule -- 2.3.1.2.2.3 Using the heat of transition rule -- 2.3.2 Solvates/Hydrates -- 2.3.2.1 Anhydrate/Hydrate equilibrium at constant temperature -- 2.3.2.2 Temperature dependence of anhydrate/hydrate equilibrium -- 2.3.3 Cocrystals -- 2.3.4 Amorphous solids -- 2.4 Pharmaceutical Relevance and Implications -- 2.4.1 Solubility -- 2.4.2 Dissolution rate and bioavailability -- 2.4.3 Hygroscopicity -- 2.4.4 Reactivity and chemical stability -- 2.4.4.1 Topochemical reactions -- 2.4.4.2 Nontopochemical reactions -- 2.4.5 Mechanical properties -- 2.5 Transformations Among Solids -- 2.5.1 Induced by heat -- 2.5.1.1 Polymorphic transitions -- 2.5.1.2 Dehydration/Desolvation -- 2.5.1.3 Cocrystal formation -- 2.5.2 Induced by vapor -- 2.5.3 Induced by solvents -- 2.5.4 Induced by mechanical stresses -- 2.6 Methods of Generating Solids -- 2.6.1 Through gas -- 2.6.2 Through liquid -- 2.6.2.1 Through neat liquid -- 2.6.2.2 Through solution -- 2.6.2.2.1 Solvent evaporation -- 2.6.2.2.2 Antisolvent addition -- 2.6.2.2.3 Reactive solvent addition. , 2.6.2.2.4 Temperature gradient -- 2.6.2.2.5 Suspension method -- 2.6.3 Through solid -- 2.7 Amorphous Drugs and Solid Dispersions -- 2.7.1 Characteristics of amorphous phases -- 2.7.1.1 Origin of the glass transition -- 2.7.1.2 Configurational thermodynamic quantities -- 2.7.1.3 Molecular relaxation in the amorphous state -- 2.7.2 Characteristics of amorphous solid dispersions -- 2.7.2.1 Thermodynamic analyses and phase miscibility -- 2.7.2.1.1 Entropy of mixing -- 2.7.2.1.2 Enthalpy of mixing -- 2.7.2.1.3 Free energy of mixing -- 2.7.2.2 Molecular mobility in amorphous solid dispersions -- 2.7.2.3 Solubility in polymeric matrix -- 2.7.3 Crystallization of amorphous drugs and dispersions -- 2.7.3.1 Molecular mobility -- 2.7.3.2 Free energy driving force -- 2.7.3.3 Configurational entropy -- 2.7.3.4 Crystallization inhibition -- 2.8 Special Topics -- 2.8.1 Polymorph screening and stable form screening -- 2.8.2 High-Throughput crystallization -- 2.8.3 Miniaturization in crystallization -- References -- 3 Solid-State Characterization and Techniques -- 3.1 Introduction -- 3.2 Microscopy -- 3.2.1 Optical microscopy -- 3.2.2 Electron microscopy -- 3.2.3 Probe microscopy -- 3.3 Powder X-ray Diffraction -- 3.4 Thermal Analysis -- 3.4.1 Differential scanning calorimetry -- 3.4.1.1 Instrumentation -- 3.4.1.2 Applications -- 3.4.1.2.1 Melting and phase diagram -- 3.4.1.2.2 Characterization of polymorphs -- 3.4.1.2.3 Characterization of hydrates -- 3.4.1.2.4 Characterization of amorphous phases -- 3.4.2 Thermogravimetric analysis -- 3.4.3 Microcalorimetry -- 3.5 Vibrational Spectroscopy -- 3.5.1 IR and Raman spectroscopy -- 3.5.1.1 IR spectroscopy -- 3.5.1.2 Raman spectroscopy -- 3.5.2 SSNMR spectroscopy -- 3.6 Moisture Sorption -- 3.7 Hyphenated Techniques -- 3.8 Conclusion -- References -- 4 API Solid-Form Screening and Selection -- 4.1 Introduction. , 4.2 Solid-Form Selection Considerations -- 4.2.1 Key physicochemical property considerations -- 4.2.1.1 Solid-form stability -- 4.2.1.2 Hygroscopicity -- 4.2.1.3 Solubility, dissolution rate, and bioavailability -- 4.2.2 Considerations for various forms -- 4.2.2.1 Salts -- 4.2.2.1.1 pH-solubility profile and salt solubility -- 4.2.2.1.2 Selection of counterions and salt formation -- 4.2.2.1.3 Dissolution and oral absorption of salts -- 4.2.2.1.4 Toxicity of counterions -- 4.2.2.1.5 Chemical stability considerations -- 4.2.2.1.6 Disproportionation of salts -- 4.2.2.1.7 Dosage form consideration -- 4.2.2.2 Cocrystals -- 4.2.2.2.1 Selection of coformer -- 4.2.2.3 Polymorphs, solvates, and hydrates -- 4.2.2.4 Amorphous forms -- 4.3 Screening SOLID-FORMS of API -- 4.3.1 Screening techniques -- 4.3.2 High-throughput screening -- 4.3.3 Manual screens -- 4.3.4 Alternate screens -- 4.4 Identification and Analysis of Forms -- 4.4.1 Single-crystal and PXRD -- 4.4.2 Thermal techniques -- 4.4.3 Spectroscopic techniques -- 4.5 Conclusions -- 4.6 Case Studies -- 4.6.1 Case study 1: RPR111423144 -- 4.6.2 Case study 2: LY333531145 -- 4.6.3 Case study 3 -- References -- 5 Drug Stability and Degradation Studies -- 5.1 Introduction -- 5.2 Chemical Stability -- 5.2.1 Solution kinetics -- 5.2.2 Rate equations -- 5.2.3 Elemental reactions and reaction mechanism -- 5.2.4 Typical simple order kinetics -- 5.2.4.1 Zero-order reactions -- 5.2.4.2 First-order reactions -- 5.2.4.3 Second-order reactions -- 5.2.4.4 Apparent pseudokinetic orders -- 5.2.5 Complex reactions -- 5.2.5.1 Reversible reactions -- 5.2.5.2 Parallel reactions -- 5.2.5.3 Consecutive reactions -- 5.2.6 Arrhenius equation, collision theory, and transition state theory -- 5.2.6.1 Arrhenius equation -- 5.2.6.2 Classic collision theory of reaction rates -- 5.2.6.3 Transition state theory. , 5.2.7 Catalysts and catalysis -- 5.2.7.1 Specific acid-base catalysis -- 5.2.7.2 General acid-base catalysis -- 5.2.8 pH-rate profiles -- 5.2.8.1 V-shaped, U-shaped, and other truncated pH-rate profiles -- 5.2.8.2 Sigmoidal pH-rate profiles -- 5.2.8.3 Bell-shaped pH-rate profiles -- 5.2.8.4 More complicated pH-rate profiles -- 5.2.9 Solid-state reaction kinetics -- 5.2.10 Solid-state kinetic models -- 5.2.10.1 Reactions involving nucleation -- 5.2.10.2 Avrami-Erofeev equation -- 5.2.10.3 Prout-Tompkins equation -- 5.2.10.4 Reactions controlled by diffusion -- 5.2.10.5 Reactions governed by phase boundaries -- 5.2.10.6 Higher (nth)-order reactions -- 5.2.10.7 Bawn kinetics -- 5.2.10.8 Model-fitting versus model-free approaches -- 5.2.11 Physical parameters affecting solid-state kinetics -- 5.2.12 The role of moisture -- 5.2.13 Topochemical reactions -- 5.3 Common Pathways of Drug Degradation -- 5.3.1 Hydrolysis -- 5.3.1.1 Hydrolysis of carboxylic acid derivatives -- 5.3.1.2 Hydrolysis of acetals and ketals -- 5.3.1.3 Hydrolysis of other carbonyl derivatives -- 5.3.1.4 Miscellaneous hydrolysis reactions -- 5.3.2 Oxidative degradation -- 5.3.2.1 Mechanisms of oxidation -- 5.3.2.2 Prediction of oxidative stability -- 5.3.2.3 Functional groups susceptible to oxidation -- 5.3.3 Photochemical degradation -- 5.3.3.1 Light -- 5.3.3.2 Light absorption, excitation, and photochemical reactions -- 5.3.3.3 Photooxidation -- 5.3.4 Other degradation pathways -- 5.4 Experimental Approaches to Studying the Chemical Degradation of Drugs -- 5.4.1 Solution thermal degradation studies -- 5.4.2 Solid-state thermal degradation studies -- 5.4.3 Oxidative degradation studies -- 5.4.4 Photodegradation studies -- 5.5 Physical Stability and Phase Transformations -- 5.5.1 Types of phase transformations -- 5.5.2 Mechanisms of phase transformations. , 5.5.2.1 Solid-state transitions.
    Weitere Ausg.: ISBN 0-12-802447-X
    Weitere Ausg.: ISBN 0-12-802637-5
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    London, [England] :Academic Press,
    UID:
    edoccha_9960161230002883
    Umfang: 1 online resource (1,176 pages) : , illustrations
    Ausgabe: Second edition.
    Anmerkung: Front Cover -- Developing Solid Oral Dosage Forms -- Copyright Page -- Dedication -- Contents -- List of Contributors -- Foreword -- I. Theories and Techniques in the Characterization of Drug Substances and Excipients -- 1 Solubility of Pharmaceutical Solids -- 1.1 Introduction -- 1.1.1 Implication of solubility in dosage form development -- 1.1.2 Basic concepts of solubility and dissolution -- 1.1.2.1 Ionic interactions -- 1.1.2.2 van der Waals interactions -- 1.1.2.3 Dispersion interactions -- 1.1.2.4 Hydrogen bonding -- 1.2 Thermodynamics of Solutions -- 1.2.1 Volume of mixing -- 1.2.2 Enthalpy of mixing -- 1.2.3 Entropy of mixing -- 1.2.4 Free energy of mixing -- 1.3 Theoretical Estimation of Solubility -- 1.3.1 Ideal solutions -- 1.3.2 Effect of crystallinity -- 1.3.3 Nonideal solutions -- 1.3.4 Regular solution theory -- 1.3.5 Aqueous solution theory -- 1.3.6 General solubility equation -- 1.4 Solubilization of Drug Candidates -- 1.4.1 Solubility enhancement by pH control and salt formation -- 1.4.1.1 Theoretical expressions to describe pH-solubility profiles -- 1.4.2 Solubilization using complexation -- 1.4.2.1 AL-type phase diagrams -- 1.4.2.2 AP-type phase diagrams -- 1.4.2.3 BS-type phase diagrams -- 1.4.3 Solubilization by cosolvents -- 1.4.4 Solubilization by surfactants (micellar solubilization) -- 1.4.5 Solubilization by combination of approaches -- 1.4.5.1 Combined effect of ionization and cosolvency -- 1.4.5.2 Combined effect of ionization and micellization -- 1.4.5.3 Combined effect of ionization and complexation -- 1.4.5.4 Combined effect of cosolvency and complexation -- 1.4.5.5 Combined effect of complexation and micellar solubilization -- 1.5 Experimental Determination of Solubility -- 1.5.1 Stability of solute and solvent -- 1.5.2 Shakers and containers -- 1.5.3 Presence of excess undissolved solute. , 1.5.4 Determination of equilibrium -- 1.5.5 Phase separation -- 1.5.6 Determination of solute content in the dissolved phase -- 1.5.7 Experimental conditions -- References -- 2 Crystalline and Amorphous Solids -- 2.1 Introduction -- 2.2 Definitions and Categorization of Solids -- 2.3 Thermodynamics and Phase Diagrams -- 2.3.1 Polymorphs -- 2.3.1.1 Enantiotropy and monotropy -- 2.3.1.2 Methods of determining stability relationships between polymorphs -- 2.3.1.2.1 Quantitative methods -- 2.3.1.2.1.1 Using heat of fusion data -- 2.3.1.2.1.2 Using eutectic fusion data -- 2.3.1.2.1.3 Using solubility/intrinsic dissolution rate data -- 2.3.1.2.1.4 Using solubility/intrinsic dissolution rate and heat of solution data -- 2.3.1.2.2 Qualitative methods -- 2.3.1.2.2.1 Using the definition -- 2.3.1.2.2.2 Using the heat of fusion rule -- 2.3.1.2.2.3 Using the heat of transition rule -- 2.3.2 Solvates/Hydrates -- 2.3.2.1 Anhydrate/Hydrate equilibrium at constant temperature -- 2.3.2.2 Temperature dependence of anhydrate/hydrate equilibrium -- 2.3.3 Cocrystals -- 2.3.4 Amorphous solids -- 2.4 Pharmaceutical Relevance and Implications -- 2.4.1 Solubility -- 2.4.2 Dissolution rate and bioavailability -- 2.4.3 Hygroscopicity -- 2.4.4 Reactivity and chemical stability -- 2.4.4.1 Topochemical reactions -- 2.4.4.2 Nontopochemical reactions -- 2.4.5 Mechanical properties -- 2.5 Transformations Among Solids -- 2.5.1 Induced by heat -- 2.5.1.1 Polymorphic transitions -- 2.5.1.2 Dehydration/Desolvation -- 2.5.1.3 Cocrystal formation -- 2.5.2 Induced by vapor -- 2.5.3 Induced by solvents -- 2.5.4 Induced by mechanical stresses -- 2.6 Methods of Generating Solids -- 2.6.1 Through gas -- 2.6.2 Through liquid -- 2.6.2.1 Through neat liquid -- 2.6.2.2 Through solution -- 2.6.2.2.1 Solvent evaporation -- 2.6.2.2.2 Antisolvent addition -- 2.6.2.2.3 Reactive solvent addition. , 2.6.2.2.4 Temperature gradient -- 2.6.2.2.5 Suspension method -- 2.6.3 Through solid -- 2.7 Amorphous Drugs and Solid Dispersions -- 2.7.1 Characteristics of amorphous phases -- 2.7.1.1 Origin of the glass transition -- 2.7.1.2 Configurational thermodynamic quantities -- 2.7.1.3 Molecular relaxation in the amorphous state -- 2.7.2 Characteristics of amorphous solid dispersions -- 2.7.2.1 Thermodynamic analyses and phase miscibility -- 2.7.2.1.1 Entropy of mixing -- 2.7.2.1.2 Enthalpy of mixing -- 2.7.2.1.3 Free energy of mixing -- 2.7.2.2 Molecular mobility in amorphous solid dispersions -- 2.7.2.3 Solubility in polymeric matrix -- 2.7.3 Crystallization of amorphous drugs and dispersions -- 2.7.3.1 Molecular mobility -- 2.7.3.2 Free energy driving force -- 2.7.3.3 Configurational entropy -- 2.7.3.4 Crystallization inhibition -- 2.8 Special Topics -- 2.8.1 Polymorph screening and stable form screening -- 2.8.2 High-Throughput crystallization -- 2.8.3 Miniaturization in crystallization -- References -- 3 Solid-State Characterization and Techniques -- 3.1 Introduction -- 3.2 Microscopy -- 3.2.1 Optical microscopy -- 3.2.2 Electron microscopy -- 3.2.3 Probe microscopy -- 3.3 Powder X-ray Diffraction -- 3.4 Thermal Analysis -- 3.4.1 Differential scanning calorimetry -- 3.4.1.1 Instrumentation -- 3.4.1.2 Applications -- 3.4.1.2.1 Melting and phase diagram -- 3.4.1.2.2 Characterization of polymorphs -- 3.4.1.2.3 Characterization of hydrates -- 3.4.1.2.4 Characterization of amorphous phases -- 3.4.2 Thermogravimetric analysis -- 3.4.3 Microcalorimetry -- 3.5 Vibrational Spectroscopy -- 3.5.1 IR and Raman spectroscopy -- 3.5.1.1 IR spectroscopy -- 3.5.1.2 Raman spectroscopy -- 3.5.2 SSNMR spectroscopy -- 3.6 Moisture Sorption -- 3.7 Hyphenated Techniques -- 3.8 Conclusion -- References -- 4 API Solid-Form Screening and Selection -- 4.1 Introduction. , 4.2 Solid-Form Selection Considerations -- 4.2.1 Key physicochemical property considerations -- 4.2.1.1 Solid-form stability -- 4.2.1.2 Hygroscopicity -- 4.2.1.3 Solubility, dissolution rate, and bioavailability -- 4.2.2 Considerations for various forms -- 4.2.2.1 Salts -- 4.2.2.1.1 pH-solubility profile and salt solubility -- 4.2.2.1.2 Selection of counterions and salt formation -- 4.2.2.1.3 Dissolution and oral absorption of salts -- 4.2.2.1.4 Toxicity of counterions -- 4.2.2.1.5 Chemical stability considerations -- 4.2.2.1.6 Disproportionation of salts -- 4.2.2.1.7 Dosage form consideration -- 4.2.2.2 Cocrystals -- 4.2.2.2.1 Selection of coformer -- 4.2.2.3 Polymorphs, solvates, and hydrates -- 4.2.2.4 Amorphous forms -- 4.3 Screening SOLID-FORMS of API -- 4.3.1 Screening techniques -- 4.3.2 High-throughput screening -- 4.3.3 Manual screens -- 4.3.4 Alternate screens -- 4.4 Identification and Analysis of Forms -- 4.4.1 Single-crystal and PXRD -- 4.4.2 Thermal techniques -- 4.4.3 Spectroscopic techniques -- 4.5 Conclusions -- 4.6 Case Studies -- 4.6.1 Case study 1: RPR111423144 -- 4.6.2 Case study 2: LY333531145 -- 4.6.3 Case study 3 -- References -- 5 Drug Stability and Degradation Studies -- 5.1 Introduction -- 5.2 Chemical Stability -- 5.2.1 Solution kinetics -- 5.2.2 Rate equations -- 5.2.3 Elemental reactions and reaction mechanism -- 5.2.4 Typical simple order kinetics -- 5.2.4.1 Zero-order reactions -- 5.2.4.2 First-order reactions -- 5.2.4.3 Second-order reactions -- 5.2.4.4 Apparent pseudokinetic orders -- 5.2.5 Complex reactions -- 5.2.5.1 Reversible reactions -- 5.2.5.2 Parallel reactions -- 5.2.5.3 Consecutive reactions -- 5.2.6 Arrhenius equation, collision theory, and transition state theory -- 5.2.6.1 Arrhenius equation -- 5.2.6.2 Classic collision theory of reaction rates -- 5.2.6.3 Transition state theory. , 5.2.7 Catalysts and catalysis -- 5.2.7.1 Specific acid-base catalysis -- 5.2.7.2 General acid-base catalysis -- 5.2.8 pH-rate profiles -- 5.2.8.1 V-shaped, U-shaped, and other truncated pH-rate profiles -- 5.2.8.2 Sigmoidal pH-rate profiles -- 5.2.8.3 Bell-shaped pH-rate profiles -- 5.2.8.4 More complicated pH-rate profiles -- 5.2.9 Solid-state reaction kinetics -- 5.2.10 Solid-state kinetic models -- 5.2.10.1 Reactions involving nucleation -- 5.2.10.2 Avrami-Erofeev equation -- 5.2.10.3 Prout-Tompkins equation -- 5.2.10.4 Reactions controlled by diffusion -- 5.2.10.5 Reactions governed by phase boundaries -- 5.2.10.6 Higher (nth)-order reactions -- 5.2.10.7 Bawn kinetics -- 5.2.10.8 Model-fitting versus model-free approaches -- 5.2.11 Physical parameters affecting solid-state kinetics -- 5.2.12 The role of moisture -- 5.2.13 Topochemical reactions -- 5.3 Common Pathways of Drug Degradation -- 5.3.1 Hydrolysis -- 5.3.1.1 Hydrolysis of carboxylic acid derivatives -- 5.3.1.2 Hydrolysis of acetals and ketals -- 5.3.1.3 Hydrolysis of other carbonyl derivatives -- 5.3.1.4 Miscellaneous hydrolysis reactions -- 5.3.2 Oxidative degradation -- 5.3.2.1 Mechanisms of oxidation -- 5.3.2.2 Prediction of oxidative stability -- 5.3.2.3 Functional groups susceptible to oxidation -- 5.3.3 Photochemical degradation -- 5.3.3.1 Light -- 5.3.3.2 Light absorption, excitation, and photochemical reactions -- 5.3.3.3 Photooxidation -- 5.3.4 Other degradation pathways -- 5.4 Experimental Approaches to Studying the Chemical Degradation of Drugs -- 5.4.1 Solution thermal degradation studies -- 5.4.2 Solid-state thermal degradation studies -- 5.4.3 Oxidative degradation studies -- 5.4.4 Photodegradation studies -- 5.5 Physical Stability and Phase Transformations -- 5.5.1 Types of phase transformations -- 5.5.2 Mechanisms of phase transformations. , 5.5.2.1 Solid-state transitions.
    Weitere Ausg.: ISBN 0-12-802447-X
    Weitere Ausg.: ISBN 0-12-802637-5
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    London, [England] :Academic Press,
    UID:
    almahu_9949232406302882
    Umfang: 1 online resource (1,176 pages) : , illustrations
    Ausgabe: Second edition.
    Anmerkung: Front Cover -- Developing Solid Oral Dosage Forms -- Copyright Page -- Dedication -- Contents -- List of Contributors -- Foreword -- I. Theories and Techniques in the Characterization of Drug Substances and Excipients -- 1 Solubility of Pharmaceutical Solids -- 1.1 Introduction -- 1.1.1 Implication of solubility in dosage form development -- 1.1.2 Basic concepts of solubility and dissolution -- 1.1.2.1 Ionic interactions -- 1.1.2.2 van der Waals interactions -- 1.1.2.3 Dispersion interactions -- 1.1.2.4 Hydrogen bonding -- 1.2 Thermodynamics of Solutions -- 1.2.1 Volume of mixing -- 1.2.2 Enthalpy of mixing -- 1.2.3 Entropy of mixing -- 1.2.4 Free energy of mixing -- 1.3 Theoretical Estimation of Solubility -- 1.3.1 Ideal solutions -- 1.3.2 Effect of crystallinity -- 1.3.3 Nonideal solutions -- 1.3.4 Regular solution theory -- 1.3.5 Aqueous solution theory -- 1.3.6 General solubility equation -- 1.4 Solubilization of Drug Candidates -- 1.4.1 Solubility enhancement by pH control and salt formation -- 1.4.1.1 Theoretical expressions to describe pH-solubility profiles -- 1.4.2 Solubilization using complexation -- 1.4.2.1 AL-type phase diagrams -- 1.4.2.2 AP-type phase diagrams -- 1.4.2.3 BS-type phase diagrams -- 1.4.3 Solubilization by cosolvents -- 1.4.4 Solubilization by surfactants (micellar solubilization) -- 1.4.5 Solubilization by combination of approaches -- 1.4.5.1 Combined effect of ionization and cosolvency -- 1.4.5.2 Combined effect of ionization and micellization -- 1.4.5.3 Combined effect of ionization and complexation -- 1.4.5.4 Combined effect of cosolvency and complexation -- 1.4.5.5 Combined effect of complexation and micellar solubilization -- 1.5 Experimental Determination of Solubility -- 1.5.1 Stability of solute and solvent -- 1.5.2 Shakers and containers -- 1.5.3 Presence of excess undissolved solute. , 1.5.4 Determination of equilibrium -- 1.5.5 Phase separation -- 1.5.6 Determination of solute content in the dissolved phase -- 1.5.7 Experimental conditions -- References -- 2 Crystalline and Amorphous Solids -- 2.1 Introduction -- 2.2 Definitions and Categorization of Solids -- 2.3 Thermodynamics and Phase Diagrams -- 2.3.1 Polymorphs -- 2.3.1.1 Enantiotropy and monotropy -- 2.3.1.2 Methods of determining stability relationships between polymorphs -- 2.3.1.2.1 Quantitative methods -- 2.3.1.2.1.1 Using heat of fusion data -- 2.3.1.2.1.2 Using eutectic fusion data -- 2.3.1.2.1.3 Using solubility/intrinsic dissolution rate data -- 2.3.1.2.1.4 Using solubility/intrinsic dissolution rate and heat of solution data -- 2.3.1.2.2 Qualitative methods -- 2.3.1.2.2.1 Using the definition -- 2.3.1.2.2.2 Using the heat of fusion rule -- 2.3.1.2.2.3 Using the heat of transition rule -- 2.3.2 Solvates/Hydrates -- 2.3.2.1 Anhydrate/Hydrate equilibrium at constant temperature -- 2.3.2.2 Temperature dependence of anhydrate/hydrate equilibrium -- 2.3.3 Cocrystals -- 2.3.4 Amorphous solids -- 2.4 Pharmaceutical Relevance and Implications -- 2.4.1 Solubility -- 2.4.2 Dissolution rate and bioavailability -- 2.4.3 Hygroscopicity -- 2.4.4 Reactivity and chemical stability -- 2.4.4.1 Topochemical reactions -- 2.4.4.2 Nontopochemical reactions -- 2.4.5 Mechanical properties -- 2.5 Transformations Among Solids -- 2.5.1 Induced by heat -- 2.5.1.1 Polymorphic transitions -- 2.5.1.2 Dehydration/Desolvation -- 2.5.1.3 Cocrystal formation -- 2.5.2 Induced by vapor -- 2.5.3 Induced by solvents -- 2.5.4 Induced by mechanical stresses -- 2.6 Methods of Generating Solids -- 2.6.1 Through gas -- 2.6.2 Through liquid -- 2.6.2.1 Through neat liquid -- 2.6.2.2 Through solution -- 2.6.2.2.1 Solvent evaporation -- 2.6.2.2.2 Antisolvent addition -- 2.6.2.2.3 Reactive solvent addition. , 2.6.2.2.4 Temperature gradient -- 2.6.2.2.5 Suspension method -- 2.6.3 Through solid -- 2.7 Amorphous Drugs and Solid Dispersions -- 2.7.1 Characteristics of amorphous phases -- 2.7.1.1 Origin of the glass transition -- 2.7.1.2 Configurational thermodynamic quantities -- 2.7.1.3 Molecular relaxation in the amorphous state -- 2.7.2 Characteristics of amorphous solid dispersions -- 2.7.2.1 Thermodynamic analyses and phase miscibility -- 2.7.2.1.1 Entropy of mixing -- 2.7.2.1.2 Enthalpy of mixing -- 2.7.2.1.3 Free energy of mixing -- 2.7.2.2 Molecular mobility in amorphous solid dispersions -- 2.7.2.3 Solubility in polymeric matrix -- 2.7.3 Crystallization of amorphous drugs and dispersions -- 2.7.3.1 Molecular mobility -- 2.7.3.2 Free energy driving force -- 2.7.3.3 Configurational entropy -- 2.7.3.4 Crystallization inhibition -- 2.8 Special Topics -- 2.8.1 Polymorph screening and stable form screening -- 2.8.2 High-Throughput crystallization -- 2.8.3 Miniaturization in crystallization -- References -- 3 Solid-State Characterization and Techniques -- 3.1 Introduction -- 3.2 Microscopy -- 3.2.1 Optical microscopy -- 3.2.2 Electron microscopy -- 3.2.3 Probe microscopy -- 3.3 Powder X-ray Diffraction -- 3.4 Thermal Analysis -- 3.4.1 Differential scanning calorimetry -- 3.4.1.1 Instrumentation -- 3.4.1.2 Applications -- 3.4.1.2.1 Melting and phase diagram -- 3.4.1.2.2 Characterization of polymorphs -- 3.4.1.2.3 Characterization of hydrates -- 3.4.1.2.4 Characterization of amorphous phases -- 3.4.2 Thermogravimetric analysis -- 3.4.3 Microcalorimetry -- 3.5 Vibrational Spectroscopy -- 3.5.1 IR and Raman spectroscopy -- 3.5.1.1 IR spectroscopy -- 3.5.1.2 Raman spectroscopy -- 3.5.2 SSNMR spectroscopy -- 3.6 Moisture Sorption -- 3.7 Hyphenated Techniques -- 3.8 Conclusion -- References -- 4 API Solid-Form Screening and Selection -- 4.1 Introduction. , 4.2 Solid-Form Selection Considerations -- 4.2.1 Key physicochemical property considerations -- 4.2.1.1 Solid-form stability -- 4.2.1.2 Hygroscopicity -- 4.2.1.3 Solubility, dissolution rate, and bioavailability -- 4.2.2 Considerations for various forms -- 4.2.2.1 Salts -- 4.2.2.1.1 pH-solubility profile and salt solubility -- 4.2.2.1.2 Selection of counterions and salt formation -- 4.2.2.1.3 Dissolution and oral absorption of salts -- 4.2.2.1.4 Toxicity of counterions -- 4.2.2.1.5 Chemical stability considerations -- 4.2.2.1.6 Disproportionation of salts -- 4.2.2.1.7 Dosage form consideration -- 4.2.2.2 Cocrystals -- 4.2.2.2.1 Selection of coformer -- 4.2.2.3 Polymorphs, solvates, and hydrates -- 4.2.2.4 Amorphous forms -- 4.3 Screening SOLID-FORMS of API -- 4.3.1 Screening techniques -- 4.3.2 High-throughput screening -- 4.3.3 Manual screens -- 4.3.4 Alternate screens -- 4.4 Identification and Analysis of Forms -- 4.4.1 Single-crystal and PXRD -- 4.4.2 Thermal techniques -- 4.4.3 Spectroscopic techniques -- 4.5 Conclusions -- 4.6 Case Studies -- 4.6.1 Case study 1: RPR111423144 -- 4.6.2 Case study 2: LY333531145 -- 4.6.3 Case study 3 -- References -- 5 Drug Stability and Degradation Studies -- 5.1 Introduction -- 5.2 Chemical Stability -- 5.2.1 Solution kinetics -- 5.2.2 Rate equations -- 5.2.3 Elemental reactions and reaction mechanism -- 5.2.4 Typical simple order kinetics -- 5.2.4.1 Zero-order reactions -- 5.2.4.2 First-order reactions -- 5.2.4.3 Second-order reactions -- 5.2.4.4 Apparent pseudokinetic orders -- 5.2.5 Complex reactions -- 5.2.5.1 Reversible reactions -- 5.2.5.2 Parallel reactions -- 5.2.5.3 Consecutive reactions -- 5.2.6 Arrhenius equation, collision theory, and transition state theory -- 5.2.6.1 Arrhenius equation -- 5.2.6.2 Classic collision theory of reaction rates -- 5.2.6.3 Transition state theory. , 5.2.7 Catalysts and catalysis -- 5.2.7.1 Specific acid-base catalysis -- 5.2.7.2 General acid-base catalysis -- 5.2.8 pH-rate profiles -- 5.2.8.1 V-shaped, U-shaped, and other truncated pH-rate profiles -- 5.2.8.2 Sigmoidal pH-rate profiles -- 5.2.8.3 Bell-shaped pH-rate profiles -- 5.2.8.4 More complicated pH-rate profiles -- 5.2.9 Solid-state reaction kinetics -- 5.2.10 Solid-state kinetic models -- 5.2.10.1 Reactions involving nucleation -- 5.2.10.2 Avrami-Erofeev equation -- 5.2.10.3 Prout-Tompkins equation -- 5.2.10.4 Reactions controlled by diffusion -- 5.2.10.5 Reactions governed by phase boundaries -- 5.2.10.6 Higher (nth)-order reactions -- 5.2.10.7 Bawn kinetics -- 5.2.10.8 Model-fitting versus model-free approaches -- 5.2.11 Physical parameters affecting solid-state kinetics -- 5.2.12 The role of moisture -- 5.2.13 Topochemical reactions -- 5.3 Common Pathways of Drug Degradation -- 5.3.1 Hydrolysis -- 5.3.1.1 Hydrolysis of carboxylic acid derivatives -- 5.3.1.2 Hydrolysis of acetals and ketals -- 5.3.1.3 Hydrolysis of other carbonyl derivatives -- 5.3.1.4 Miscellaneous hydrolysis reactions -- 5.3.2 Oxidative degradation -- 5.3.2.1 Mechanisms of oxidation -- 5.3.2.2 Prediction of oxidative stability -- 5.3.2.3 Functional groups susceptible to oxidation -- 5.3.3 Photochemical degradation -- 5.3.3.1 Light -- 5.3.3.2 Light absorption, excitation, and photochemical reactions -- 5.3.3.3 Photooxidation -- 5.3.4 Other degradation pathways -- 5.4 Experimental Approaches to Studying the Chemical Degradation of Drugs -- 5.4.1 Solution thermal degradation studies -- 5.4.2 Solid-state thermal degradation studies -- 5.4.3 Oxidative degradation studies -- 5.4.4 Photodegradation studies -- 5.5 Physical Stability and Phase Transformations -- 5.5.1 Types of phase transformations -- 5.5.2 Mechanisms of phase transformations. , 5.5.2.1 Solid-state transitions.
    Weitere Ausg.: ISBN 0-12-802447-X
    Weitere Ausg.: ISBN 0-12-802637-5
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780128004678?
Meinten Sie 9780128008478?
Meinten Sie 9780128014479?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz