UID:
almafu_9960161338702883
Umfang:
1 online resource (207 pages) :
,
illustrations
ISBN:
9780128026700
,
0128026707
Anmerkung:
Front Cover -- Sliding Mode Control Using MATLAB -- Copyright Page -- Contents -- Sliding mode control MATLAB simulation basic theory and design method -- 1 Basic sliding mode control principle and design -- 1.1 A Simple Sliding Mode Controller Design -- 1.2 Parameters Design of Sliding Mode Function -- 1.3 Sliding Mode Control Based on Reaching Law -- 1.4 Robust Sliding Mode Control Based on Reaching Law -- 1.4.1 System description -- 1.4.2 Controller design -- 1.4.3 Simulation example -- 1.5 Sliding Mode Control Based on a Quasi-sliding Mode -- 1.6 Sliding Mode Control Based on Continuous Tanh Function -- 1.6.1 Characteristics of tanh function -- 1.6.2 Simulation example -- 1.6.3 Sliding mode control based on tanh function -- 1.6.4 Simulation example -- References -- Appendix -- 2 Sliding mode control with high performance -- 2.1 Adaptive Sliding Mode Control for Mechanical Systems With tanh Function -- 2.1.1 System description -- 2.1.2 Adaptive sliding mode controller design -- 2.1.3 Simulation example -- 2.2 Sliding Mode Control With Prescribed Performance -- 2.2.1 Problem description -- 2.2.2 Prescribed error performance design -- 2.2.3 Controller design and analysis -- 2.2.4 Simulation example -- References -- Further Reading -- 3 Sliding mode control based on a state observer -- 3.1 Sliding Mode Control Based on a High Gain Observer -- 3.1.1 System description -- 3.1.2 High gain observer design -- 3.1.3 Sliding mode controller design -- 3.1.4 Simulation example -- 3.2 Sliding Mode Control Based on the K Observer for a High Order System -- 3.2.1 K observer design and analysis -- 3.2.2 k Design -- 3.2.3 Sliding mode control based on a K observer -- 3.2.4 Simulation example -- 3.3 Sliding Mode Control Based on a High Gain Differentiator -- 3.3.1 System description -- 3.3.2 Traditional sliding mode control.
,
3.3.3 High gain differentiator design -- 3.3.4 Sliding mode control based on a high gain differentiator -- 3.3.5 Simulation example -- 3.4 Robust State Observer Design for a Flexible Manipulator -- 3.4.1 Problem statement -- 3.4.2 Robust observer design -- 3.4.3 Observer analysis -- 3.4.4 Simulation example -- 3.5 Sliding Mode Control for Flexible Manipulator Based on a Robust State Observer -- 3.5.1 Sliding mode controller design -- 3.5.2 Simulation example -- 3.6 Sliding Mode Control with a High Gain Observer Based on Separation Principle -- 3.6.1 Separation principle -- 3.6.2 Problem statement -- 3.6.3 High gain observer design -- 3.6.4 Sliding mode controller design and analysis -- 3.6.5 Simulation example -- References -- 4 Sliding mode control based on disturbance and a delayed observer -- 4.1 Sliding Mode Control Based on Exponential Disturbance Observer -- 4.1.1 System description -- 4.1.2 Disturbance observer design with convergence exponentially -- 4.1.3 Sliding mode control -- 4.1.4 Simulation example -- 4.2 Sliding Mode Control Based on Delayed Output Observer -- 4.2.1 System description -- 4.2.2 Delayed output observer design -- 4.2.3 Sliding mode control design -- 4.2.4 Simulation example -- 4.3 Sliding Mode Control Based on a Time Varying Delayed Output Observer -- 4.3.1 System description -- 4.3.2 Delayed output observer design -- 4.3.3 K design based on Hurwitz -- 4.3.4 Simulation example -- 4.3.5 Sliding mode control based on a delayed output observer -- 4.3.6 Simulation example -- References -- Further Reading -- 5 Sliding mode control based on LMI -- 5.1 The New LMI Solution Toolbox-YALMIP Toolbox -- 5.2 Sliding Mode Controller Design for a Linear System Based on LMI -- 5.2.1 System description -- 5.2.2 Linear system stabilization based on LMI -- 5.2.3 Tracking control for linear system based on LMI -- 5.2.4 Simulation example.
,
5.3 Sliding Mode Controller Design for a Linear System Based on LMI -- 5.3.1 System description -- 5.3.2 Controller design -- 5.3.3 Simulation example -- 5.4 Nonlinear System Stabilization Based on LMI -- 5.4.1 System description -- 5.4.2 Controller design -- 5.4.3 Simulation example -- Appendix: Lipschitz Constant Matrix Design -- 5.5 Nonlinear System Tracking Control Based on LMI -- 5.5.1 System description -- 5.5.2 Controller design -- 5.5.3 Simulation example -- 5.6 Sliding Mode Control for Chaotic Systems Based on LMI -- 5.6.1 System description -- 5.6.2 Traditional sliding mode control based on LMI -- 5.6.3 Sliding mode control based on dynamic compensation -- 5.6.4 Simulation example -- References -- 6 Sliding mode control based on the RBF neural network -- 6.1 A Simple Adaptive Sliding Mode Control Based on RBF -- 6.1.1 System description -- 6.1.2 RBF neural network approximation -- 6.1.3 Sliding mode controller design -- 6.1.4 Simulation example -- 6.2 Adaptive Sliding Mode Control Based on RBF Compensation -- 6.2.1 System description -- 6.2.2 Sliding mode control based on RBF compensation -- 6.2.3 Simulation example -- 6.3 Sliding Mode Control Based on RBF with MPL -- 6.3.1 System description -- 6.3.2 Sliding mode control based on RBF -- 6.3.3 Simulation example -- 6.4 Sliding Mode Control Based on RBF with MPL for Manipulators -- 6.4.1 System description -- 6.4.2 RBF neural network design -- 6.4.3 Controller design and analysis based on MPL -- 6.4.4 Simulation example -- References -- Further Reading -- 7 Sliding mode control based on a fuzzy system -- 7.1 Sliding Mode Control Based on a Fuzzy System Approximation -- 7.1.1 Problem statement -- 7.1.2 Controller design based on a fuzzy system -- 7.1.2.1 Uncertainty approximation using a fuzzy system -- 7.1.2.2 Design of adaptive fuzzy sliding mode controller -- 7.1.3 Simulation example.
,
7.2 Sliding Mode Control Based on a Fuzzy System with Minimum Parameter Learning Method -- 7.2.1 Problem statement -- 7.2.2 Uncertainty approximation using a fuzzy system -- 7.2.3 Design of an adaptive fuzzy sliding mode controller with MPL -- 7.2.4 Simulation example -- References -- 8 Sliding mode control of a class of underactuated systems -- 8.1 Sliding Mode Control of a Class of Underactuated System -- 8.1.1 System description -- 8.1.2 Sliding mode controller design -- 8.1.3 Position tracking -- 8.1.4 Simulation example -- 8.1.4.1 First example -- 8.1.4.2 Second example -- 8.2 Sliding Mode Control Based on Hurwitz for an Underactuated System -- 8.2.1 Sliding mode control based on Hurwitz for a simple underactuated system -- 8.2.1.1 System description -- 8.2.1.2 Sliding mode controller design -- 8.2.1.3 Hurwitz stability analysis -- 8.2.1.4 Simulation example -- 8.2.2 Sliding mode control based on Hurwitz for an inverted pendulum -- 8.2.2.1 System description -- 8.2.2.2 Sliding mode controller design -- 8.2.2.3 Hurwitz stability analysis -- 8.2.2.4 Simulation example -- 8.3 Sliding Mode Control for a Special Underactuated System -- 8.3.1 System description -- 8.3.2 Sliding mode controller design -- 8.3.3 Convergence analysis -- 8.3.4 Simulation example -- References -- 9 Sliding mode control for underactuated system with decoupling algorithm -- 9.1 General Decoupling Algorithm for Underactuated System -- 9.2 Sliding Mode Control for an Inverted Pendulum -- 9.2.1 System description -- 9.2.2 Model decoupling -- 9.2.3 Sliding mode controller design -- 9.2.4 C design -- 9.2.5 Simulation example -- 9.3 Sliding Mode Control for a TORA System -- 9.3.1 System description -- 9.3.2 Model decoupling -- 9.3.3 Sliding mode controller design -- 9.3.4 Convergence analysis -- 9.3.5 Simulation example -- References -- Index -- Back Cover.
Weitere Ausg.:
ISBN 9780128025758
Weitere Ausg.:
ISBN 0128025751
Sprache:
Englisch
Bookmarklink