UID:
almafu_9960074151902883
Umfang:
1 online resource (308 pages) :
,
color illustrations
Ausgabe:
First edition.
ISBN:
9780128032107
,
0128032103
,
9780128032114
,
0128032111
Inhalt:
Numerical Modelling of Wave Energy Converters: State-of-the Art Techniques for Single WEC and Converter Arrays presents all the information and techniques required for the numerical modelling of a wave energy converter together with a comparative review of the different available techniques. The authors provide clear details on the subject and guidance on its use for WEC design, covering topics such as boundary element methods, frequency domain models, spectral domain models, time domain models, non linear potential flow models, CFD models, semi analytical models, phase resolving wave propagation models, phase averaging wave propagation models, parametric design and control optimization, mean annual energy yield, hydrodynamic loads assessment, and environmental impact assessment. Each chapter starts by defining the fundamental principles underlying the numerical modelling technique and finishes with a discussion of the technique’s limitations and a summary of the main points in the chapter. The contents of the chapters are not limited to a description of the mathematics, but also include details and discussion of the current available tools, examples available in the literature, and verification, validation, and computational requirements. In this way, the key points of each modelling technique can be identified without having to get deeply involved in the mathematical representation that is at the core of each chapter. The book is separated into four parts. The first two parts deal with modelling single wave energy converters; the third part considers the modelling of arrays; and the final part looks at the application of the different modelling techniques to the four most common uses of numerical models. It is ideal for graduate engineers and scientists interested in numerical modelling of wave energy converters, and decision-makers who must review different modelling techniques and assess their suitability and output. Consolidates in one volume information and techniques for the numerical modelling of wave energy converters and converter arrays, which has, up until now, been spread around multiple academic journals and conference proceedings making it difficult to access Presents a comparative review of the different numerical modelling techniques applied to wave energy converters, discussing their limitations, current available tools, examples, and verification, validation, and computational requirements Includes practical examples and si...
Anmerkung:
Front Cover -- Numerical Modelling of Wave Energy Converters: State-of-the-Art Techniques for Single Devices and Arrays -- Copyright -- Contents -- Contributors -- Chapter 1: Introduction -- 1.1. The Challenge of Wave Energy -- 1.2. A Short History of the Numerical Modelling of WECs -- 1.3. Current Challenges and Future Developments -- 1.4. Why This Book -- 1.5. How to Use This Book -- 1.6. Acknowledgements -- References -- Part I: Wave Energy Converter Modelling Techniques Based on Linear Hydrodynamic Theory -- Chapter 2: Frequency-Domain Models -- 2.1. Introduction and Fundamental Principles -- 2.2. Phenomenological Discussion -- 2.3. Potential Flow Theory -- 2.3.1. Laplace Equation -- 2.3.2. Boundary Conditions -- 2.3.3. Sinusoidal Waves -- 2.3.4. Problem Decomposition -- 2.4. Equation of Motion: Single Degree-of-Freedom WEC -- 2.4.1. Hydrodynamic Force -- 2.4.1.1. Solving the Potential Flow Boundary Value Problem -- Wave Excitation Force -- Radiation Force -- 2.4.1.2. Haskind Relation -- 2.4.1.3. Kramers-Kronig Relations -- 2.4.2. Hydrostatic Force -- 2.4.3. Reaction Forces -- 2.4.4. Complex Amplitude of the Body Motion -- 2.4.5. Power Absorption -- 2.4.5.1. Mean Power Absorption -- 2.4.5.2. Optimal PTO Control -- 2.4.5.3. Suboptimal PTO Control -- 2.4.5.4. Constrained Motion -- 2.4.5.5. Absorption Bandwidth -- 2.5. Equation of Motion: Multiple Degree-of-Freedom WEC -- 2.6. OWCs -- 2.7. Limitations -- 2.8. Summary -- References -- Chapter 3: Time-Domain Models -- 3.1. Introduction and Fundamental Principles -- 3.2. The Cummins Equation for Modelling WECs -- 3.3. Wave Excitation Forces -- 3.3.1. Wave Loads in Time-Domain Models -- 3.3.2. Excitation Forces as Superposition of Harmonic Components -- 3.3.3. Convolution of the Excitation Force -- 3.3.4. Nonlinear Wave Forces -- 3.4. The RIRF -- 3.4.1. Properties of the RIRF.
,
3.4.2. Numerical Computation of the RIRF -- 3.5. Convolution of the Radiation Forces -- 3.5.1. Direct Numerical Integration -- 3.5.2. Prony Identification Method -- 3.5.3. Time-Domain Identification -- 3.5.4. Frequency-Domain Identification -- 3.6. Hydrostatic Forces -- 3.7. Solution of the Cummins Equation -- 3.8. Case-Study: A Single-Body Heaving WEC -- 3.8.1. System Description -- 3.8.1.1. Linear PTO -- 3.8.1.2. Hydraulic PTO -- 3.8.2. Design and Verification of Time-Domain Models -- 3.9. The Influence of Simulation Duration -- 3.10. Limitations -- 3.11. Summary -- References -- Chapter 4: Spectral-Domain Models -- 4.1. Introduction and Fundamental Principles -- 4.2. Formulation of the Spectral-Domain Model -- 4.3. Solving a Spectral-Domain Model -- 4.4. Examples of Spectral-Domain Modelling -- 4.5. Further Developments -- 4.6. Limitations -- 4.7. Summary -- References -- Part II: Other Wave Energy Converter Modelling Techniques -- Chapter 5: Nonlinear Potential Flow Models -- 5.1. Introduction and Fundamental Principles -- 5.1.1. Beyond Linear Theory -- 5.1.2. Fundamental Principles -- 5.1.3. Applications of FNPF Models in Wave Energy -- 5.2. Formulation of the Fully Nonlinear Potential Flow Model -- 5.3. Solution Methods For Fully Nonlinear Potential Flow Problems -- 5.3.1. Mixed Eulerian-Lagrangian Method -- 5.3.2. High-Order Spectral Methods -- 5.3.3. Computation of Hydrodynamic Body Forces and Motions -- 5.4. Calculating the WEC Response -- 5.4.1. WEC Response Subject to Linear PTO Forces -- 5.5. Limitations -- 5.6. Summary -- References -- Chapter 6: Computational Fluid Dynamics (CFD) Models -- 6.1. Introduction and Fundamental Principles -- 6.2. Incompressible CFD Models -- 6.3. Compressible Two-Phase CFD Models -- 6.4. Smoothed-Particle Hydrodynamic Models -- 6.5. Limitations -- 6.6. Future Developments -- 6.7. Summary -- References.
,
Chapter 7: Identifying Models Using Recorded Data -- 7.1. Introduction and Fundamental Principles -- 7.2. Data Generation -- 7.2.1. Identification Experiments -- 7.2.1.1. Free Decay -- 7.2.1.2. Input Waves -- 7.2.1.3. Input Force -- 7.2.1.4. Prescribed Motion -- 7.3. Models for System Identification -- 7.3.1. Continuous-Time Models -- 7.3.2. Discrete-Time Models -- 7.3.2.1. Autoregressive With Exogenous Input Model (Linear) -- 7.3.2.2. Kolmogorov-Gabor Polynomial Model (Nonlinear) -- 7.3.2.3. Artificial Neural Network Model (Nonlinear) -- 7.3.2.4. Nonlinear Static Model (Nonlinear) -- 7.3.2.5. Block-Oriented Nonlinear Model (Nonlinear) -- 7.4. Identification Algorithms -- 7.4.1. System Identification -- 7.4.2. Linear Optimization -- 7.4.2.1. Time Delay and Dynamical Order Estimation (nd, na, nb) -- 7.4.2.2. Model Parameters Identification -- 7.4.3. Nonlinear Optimization -- 7.5. Case Studies -- 7.5.1. Case Study 1: Continuous-Time Models Identified From Free Responses -- 7.5.2. Case Study 2: Discrete-Time Models From Forced Oscillation -- 7.5.3. Case Study 3: Discrete-Time Models From Input Waves -- 7.6. Limitations -- 7.7. Summary -- References -- Part III: Wave Energy Converter Array Modelling Techniques -- Chapter 8: Conventional Multiple Degree-of-Freedom Array Models -- 8.1. Introduction and Fundamental Principles -- 8.2. Modelling Based on Linear Potential Flow -- 8.2.1. Frequency-Domain and Spectral-Domain Modelling -- 8.2.2. Time-Domain Modelling -- 8.3. Modelling Based on Other Techniques -- 8.4. Limitations -- 8.5. Summary -- References -- Chapter 9: Semi-analytical Array Models -- 9.1. Introduction -- 9.2. General Formulation -- 9.2.1. Mathematical Model -- 9.2.2. Partial Wave Representation of Velocity Potentials -- 9.2.2.1. Governing Equations -- 9.2.2.2. Ambient Incident Wave Potential -- 9.2.2.3. Scattered Potential.
,
9.2.2.4. Radiation Potential -- 9.2.3. Partial Wave Operators -- 9.2.3.1. Coordinate Transformation Operator -- 9.2.3.2. Diffraction Transfer Operator -- 9.3. Point Absorber Method -- 9.3.1. Background -- 9.3.2. Formulation -- 9.4. Plane Wave Method -- 9.4.1. Background -- 9.4.2. Formulation -- 9.5. Multiple Scattering Method -- 9.5.1. Background -- 9.5.2. Formulation -- 9.6. Direct Matrix Method -- 9.6.1. Background -- 9.6.2. Formulation -- 9.7. Capabilities and Limitations -- 9.7.1. Comparison Between Semi-analytical Methods -- 9.7.2. Comparison With Other Methods -- 9.7.3. Verification and Validation -- 9.8. Summary -- References -- Chapter 10: Phase-Resolving Wave Propagation Array Models -- 10.1. Introduction -- 10.2. Implementation of the WEC Simulation in the Wave Propagation Model MILDwave -- 10.2.1. General Formulation of MILDwave -- 10.2.2. Wave Generation on a Circle (for Radiated Waves) -- 10.2.3. Implementation of the Sponge Layer Technique -- 10.2.3.1. Influence of the Absorption Coefficient on the Absorption Characteristics -- 10.2.3.2. Influence of Length on the Absorption Characteristics -- 10.2.3.3. Frequency Dependent Absorption -- 10.2.4. Implementation of the Numerical Coupling Methodology -- 10.2.4.1. Introduction -- 10.2.4.2. The Generic Coupling Methodology for a Single WEC or for a WEC Farm Modelled as a Whole -- 10.2.4.3. The Generic Coupling Methodology for a WEC Farm of Individually Modelled WECs of Type (b) -- 10.3. Applications of the Numerical Techniques Using MILDwave -- 10.3.1. Wake Effects by a Single WEC of Type (a) -- 10.3.2. Wake Effects by a Farm of Type (a) WECs -- 10.3.3. Wake Effects by a Single Type (b) WEC -- 10.3.3.1. The Modelled WEC -- 10.3.3.2. Wave Conditions and Numerical Domains.
,
10.3.3.3. Modelling and Verification of the Radiated, Diffracted, and Perturbed Wave Fields Using the Coupling Methodology -- 10.4. Limitations -- 10.5. Summary -- References -- Chapter 11: Phase-Averaging Wave Propagation Array Models -- 11.1. Introduction and Fundamental Principles -- 11.2. Supragrid Models of WEC Arrays -- 11.3. Subgrid Models of WEC Arrays -- 11.4. Limitations -- 11.5. Summary -- References -- Part IV: Applications for Wave Energy Converter Models -- Chapter 12: Control Optimisation and Parametric Design -- 12.1. Introduction -- 12.2. Control of WECs -- 12.2.1. Control Effectors -- 12.2.2. Fundamental Control Results -- 12.2.3. Real-Time Model-Based WEC Control -- 12.2.3.1. A Simple but Effective WEC Controller -- 12.2.3.2. The 'Aalborg' PID Controller -- 12.2.3.3. WEC Controllers Based on Numerical Optimization -- 12.2.4. Control of WEC Arrays -- 12.2.5. Wave Forecasting -- 12.2.6. WEC Control Perspectives -- 12.3. Optimization of WECs and WEC Arrays -- 12.3.1. Geometric Optimization of WECs -- 12.3.2. WEC Array Layout Optimization -- 12.3.3. Summary -- References -- Chapter 13: Determining Mean Annual Energy Production -- 13.1. Introduction and Appropriate Modelling Techniques -- 13.2. Representation of the Wave Climate -- 13.2.1. Traditional (Scatter Table) Representation -- 13.2.2. Extensive Representation -- 13.2.3. Abridged Representation -- 13.3. Representation of Power Performance -- 13.4. Estimation of the MAEP -- 13.4.1. Power Matrix-Scatter Table -- 13.4.2. Power Matrix-Extensive/Abridged Wave Climate -- 13.4.3. Extensive/Abridged Power Performance-Extensive/Abridged Wave Climate -- 13.4.4. Abridged Power Performance-Extensive Wave Climate -- 13.5. Limitations and Constraints -- 13.6. Summary -- References -- Chapter 14: Determining Structural and Hydrodynamic Loads -- 14.1. Introduction -- 14.2. Design Principles.
,
14.2.1. General.
Sprache:
Englisch
Bookmarklink