UID:
almafu_9958072766602883
Umfang:
1 online resource (0 p.)
ISBN:
9780128033371
,
0128033371
,
9780128033043
,
0128033045
Anmerkung:
Description based upon print version of record
,
Front Cover -- Thermal Physics: Thermodynamics and Statistical Mechanics for Scientists and Engineers -- Copyright -- Dedication -- Table of Contents -- About the Cover -- Preface -- Part I: Thermodynamics -- Chapter 1: Introduction -- 1.1 Temperature -- 1.2 Thermodynamics Versus Statistical Mechanics -- 1.3 Classification of State Variables -- 1.4 Energy in Mechanics -- 1.4.1 Single Particle in One Dimension -- 1.4.2 Single Particle in Three Dimensions -- 1.4.3 System of Particles -- 1.5 Elementary Kinetic Theory -- Chapter 2: First Law of Thermodynamics -- 2.1 Statement of the First Law -- 2.1.1 Discussion of the First Law -- 2.2 Quasistatic Work -- 2.3 Heat Capacities -- 2.3.1 Heat Capacity of an Ideal Gas -- 2.3.2 General Relationship of Cp to CV -- 2.4 Work Due to Expansion of an Ideal Gas -- 2.4.1 Reversible Isothermal Process -- 2.4.2 Reversible Isobaric Expansion Followed by Isochoric Transformation -- 2.4.3 Isochoric Transformation Followed by Reversible Isobaric Expansion -- 2.4.4 Reversible Adiabatic Expansion -- 2.4.5 Irreversible Adiabatic Expansion -- 2.5 Enthalpy -- Chapter 3: Second Law of Thermodynamics -- 3.1 Statement of the Second Law -- 3.1.1 Discussion of the Second Law -- 3.2 Carnot Cycle and Engines -- 3.3 Calculation of the Entropy Change -- 3.4 Combined First and Second Laws -- 3.4.1 Latent Heat -- 3.5 Statistical Interpretation of Entropy -- 3.5.1 Relationship of Entropy to Microstates -- Chapter 4: Third Law of Thermodynamics -- 4.1 Statement of the Third Law -- 4.1.1 Discussion of the Third Law -- 4.2 Implications of the Third Law -- Chapter 5: Open Systems -- 5.1 Single Component Open System -- 5.1.1 Ideal Gas -- 5.2 Multicomponent Open Systems -- 5.2.1 Maxwell Relations for Open Systems -- 5.2.2 Other Maxwell Relations -- 5.3 Euler Theorem of Homogeneous Functions.
,
5.3.1 Euler Theorem Applied to Extensive Functions -- 5.3.2 Euler Theorem Applied to Intensive Functions -- 5.4 Chemical Potential of Real Gases, Fugacity -- 5.5 Legendre Transformations -- 5.5.1 Specific Legendre Transforms -- 5.6 Partial Molar Quantities -- 5.6.1 Method of Intercepts -- 5.7 Entropy of Chemical Reaction -- Chapter 6: Equilibrium and Thermodynamic Potentials -- 6.1 Entropy Criterion -- 6.1.1 Conditions for Equilibrium, Multicomponent Subsystems -- 6.1.2 Phase Rule -- 6.2 Energy Criterion -- 6.2.1 Local Energy Criterion -- 6.2.2 Equivalence of Entropy and Energy Criteria -- 6.3 Other Equilibrium Criteria -- 6.3.1 Helmholtz Free Energy Criterion -- 6.3.2 Gibbs Free Energy Criterion -- 6.3.3 Enthalpy Criterion -- 6.3.4 Kramers Potential Criterion -- 6.4 Summary of Criteria -- 6.4.1 Equilibrium Conditions -- 6.4.2 Extension to Chemical Reactions -- Chapter 7: Requirements for Stability -- 7.1 Stability Requirements for Entropy -- 7.2 Stability Requirements for Internal Energy -- 7.3 Stability Requirements for Other Potentials -- 7.3.1 Enthalpy -- 7.3.2 Helmholtz Free Energy -- 7.3.3 Gibbs Free Energy -- 7.3.4 Summary of Stability Requirements -- 7.4 Consequences of Stability Requirements -- 7.5 Extension to Many Variables -- 7.6 Principles of Le Chatlier and Le Chatlier-Braun -- Chapter 8: Monocomponent Phase Equilibrium -- 8.1 Clausius-Clapeyron Equation -- 8.1.1 Approximate Vapor Pressure Curve -- 8.1.2 Approximate Solid-Liquid Coexistence Curve -- 8.1.3 Approximate Relative Magnitudes -- 8.2 Sketches of the Thermodynamic Functions -- 8.3 Phase Diagram in the v, p Plane -- Chapter 9: Two-Phase Equilibrium for a van der Waals Fluid -- 9.1 van der Waals Equation of State -- 9.1.1 Isotherms -- 9.1.2 Spinodal Curve -- 9.2 Thermodynamic Functions -- 9.2.1 Origin of the Constant a -- 9.3 Phase Equilibrium and Miscibility Gap.
,
9.3.1 Common Tangent Construction -- 9.3.2 Chord Construction -- 9.3.3 Summary for f(v) Curves -- 9.3.4 Explicit Equations for van der Waals Miscibility Gap -- 9.4 Gibbs Free Energy -- 9.4.1 Maxwell Construction -- Chapter 10: Binary Solutions -- 10.1 Thermodynamics of Binary Solutions -- 10.1.1 Molar Gibbs Free Energy -- 10.1.2 Intercept and Common Tangent Constructions -- 10.1.3 Chord Construction -- 10.2 Ideal Solutions -- 10.3 Phase Diagram for an Ideal Solid and an Ideal Liquid -- 10.3.1 Equations for the Miscibility Gap -- 10.4 Regular Solution -- 10.5 General Binary Solutions -- Chapter 11: External Forces and Rotating Coordinate Systems -- 11.1 Conditions for Equilibrium -- 11.2 Uniform Gravitational Field -- 11.2.1 Multicomponent Ideal Gas in Gravity -- 11.2.2 Binary Liquid in Gravity -- 11.3 Non-Uniform Gravitational Field -- 11.4 Rotating Systems -- 11.5 Electric Fields -- Chapter 12: Chemical Reactions -- 12.1 Reactions at Constant Volume or Pressure -- 12.1.1 Heat of Reaction -- 12.2 Standard States -- 12.2.1 Heat of Formation -- 12.3 Equilibrium and Affinity -- 12.4 Explicit Equilibrium Conditions -- 12.4.1 Reactions among Gases -- 12.4.2 Heterogeneous Solids and Liquids with Gases -- 12.4.3 Dependence of K(T, p0) on Temperature -- 12.4.4 Dependence of K(T, p) on Pressure -- 12.5 Simultaneous Reactions -- Chapter 13: Thermodynamics of Fluid-Fluid Interfaces -- 13.1 Planar Interfaces in Fluids -- 13.1.1 Gibbs Dividing Surface Model -- 13.1.2 Gibbs Adsorption Equation -- 13.1.3 Cahn's Layer Model -- 13.2 Curved Interfaces in Fluids -- 13.2.1 Gibbs Coefficients of Curvatures -- 13.3 Interface Junctions and Contact Angles -- 13.3.1 Contact Angle -- 13.4 Liquid Surface Shape in Gravity -- 13.4.1 Examples in Two Dimensions -- 13.4.2 Examples in Three Dimensions -- Chapter 14: Thermodynamics of Solid-Fluid Interfaces.
,
14.1 Planar Solid-Fluid Interfaces -- 14.1.1 Adsorption Equation in the Reference State -- 14.1.2 Adsorption Equation in the Actual State -- 14.2 Anisotropy of γ -- 14.3 Curved Solid-Fluid Interfaces -- 14.3.1 Discontinuous Derivatives of γ -- 14.3.2 Inverted γ-Plot -- 14.4 Faceting of a Large Planar Face -- 14.5 Equilibrium Shape from the ξ-Vector -- 14.6 Herring Formula -- 14.7 Legendre Transform of the Equilibrium Shape -- 14.8 Remarks About Solid-Solid Interfaces -- Part II: Statistical Mechanics -- Chapter 15: Entropy and Information Theory -- 15.1 Entropy as a Measure of Disorder -- 15.1.1 The Disorder Function -- 15.2 Boltzmann Eta Theorem -- 15.2.1 Boltzmann Equation -- 15.2.2 Eta Theorem -- Chapter 16: Microcanonical Ensemble -- 16.1 Fundamental Hypothesis of Statistical Mechanics -- 16.2 Two-State Subsystems -- 16.3 Harmonic Oscillators -- 16.3.1 Generating Function -- 16.4 Ideal Gas -- 16.4.1 Monatomic Ideal Gas with Gibbs Correction Factor -- 16.4.2 Scaling Analysis -- 16.5 Multicomponent Ideal Gas -- 16.5.1 Entropy of Mixing -- Chapter 17: Classical Microcanonical Ensemble -- 17.1 Liouville's Theorem -- 17.2 Classical Microcanonical Ensemble -- 17.2.1 Classical Ideal Gas -- 17.2.2 Classical Harmonic Oscillators in Three Dimensions -- Chapter 18: Distinguishable Particles with Negligible Interaction Energies -- 18.1 Derivation of the Boltzmann Distribution -- 18.1.1 Summary of Results -- 18.2 Two-State Subsystems -- 18.3 Harmonic Oscillators -- 18.3.1 Application: Heat Capacity of a Crystal -- 18.3.2 Application: Blackbody Radiation -- 18.4 Rigid Linear Rotator -- Chapter 19: Canonical Ensemble -- 19.1 Three Derivations -- 19.1.1 Derivation from Microcanonical Ensemble I -- 19.1.2 Derivation from Microcanonical Ensemble II -- 19.1.3 Derivation III: Most Probable Distribution -- 19.2 Factorization Theorem.
,
19.2.1 Distinguishable Particles with Negligible Interaction -- 19.3 Classical Ideal Gas -- 19.3.1 Free Particle in a Box -- 19.4 Maxwell-Boltzmann Distribution -- 19.5 Energy Dispersion -- 19.6 Paramagnetism -- 19.6.1 Classical Treatment -- 19.6.2 Quantum Treatment -- 19.6.3 Properties of Paramagnetic Systems -- 19.6.4 Adiabatic Demagnetization -- 19.7 Partition Function and Density of States -- Chapter 20: Classical Canonical Ensemble -- 20.1 Classical Ideal Gas -- 20.1.1 Effusion of an Ideal Classical Gas -- 20.2 Law of Dulong and Petit -- 20.3 Averaging Theorem and Equipartition -- 20.4 Virial Theorem -- 20.5 Virial Coefficients -- 20.6 Use of Canonical Transformations -- 20.7 Rotating Rigid Polyatomic Molecules -- Chapter 21: Grand Canonical Ensemble -- 21.1 Derivation from Microcanonical Ensemble -- 21.1.1 Kramers Function -- 21.1.2 Particle Number Dispersion -- 21.1.3 Energy Dispersion -- 21.2 Ideal Systems: Orbitals and Factorization -- 21.2.1 Factorization for Independent Sites -- 21.2.2 Fermi-Dirac Distribution -- 21.2.3 Bose-Einstein Distribution -- 21.2.4 Classical Ideal Gas -- 21.2.5 Fermi, Bose, and Classical Gases -- 21.2.6 Orbital Populations for Ideal Gases -- 21.3 Classical Ideal Gas with Internal Structure -- 21.3.1 Monatomic Gas -- 21.3.2 Diatomic Molecular Gas -- 21.3.3 Polyatomic Molecular Gas -- 21.4 Multicomponent Systems -- 21.5 Pressure Ensemble -- 21.5.1 Vacancies in Monovalent Crystals -- 21.5.2 Vacancies, Divacancies, and Interstitials -- 21.5.3 Vacancies and Interstitials in Ionic Crystals -- Chapter 22: Entropy for Any Ensemble -- 22.1 General Ensemble -- 22.1.1 Example of the Maximization -- 22.1.2 Use of the Entropy Formula -- 22.2 Summation over Energy Levels -- Chapter 23: Unified Treatment of Ideal Fermi, Bose, and Classical Gases -- 23.1 Integral Formulae -- 23.2 The Functions hν(λ,a).
,
23.3 Virial Expansions for Ideal Fermi and Bose Gases.
,
English
Sprache:
Englisch
Bookmarklink