UID:
almafu_9961089689102883
Umfang:
1 online resource (504 pages)
ISBN:
9780128040997
,
0128040998
,
9780128040225
,
012804022X
Anmerkung:
Includes index.
,
Front Cover -- Biotechnology of Metals -- Copyright Page -- Contents -- Preface -- 1 Introduction-Status and Scope of Metals Biotechnology -- References -- 2 Biotechnology-Materials Interface: Biogenesis and Biomineralization -- Biotechnology-Materials Interface -- Biomimetics and Biomaterials -- Biomineralization and Biogenesis Relevant to Ore Deposits -- Sulfide Minerals -- Iron Ores -- Biomineralization of Bauxites -- Gold and Platinum -- Clays -- Ocean Ferromanganese Nodules -- Limestone, Silica, Phosphorous, and Arsenic -- References -- 3 Microbiological Aspects of Leaching Microorganisms -- Bioleaching Microorganisms -- Microbial Communities in Mining Environments -- General Characteristics, Physiology, and Molecular Aspects of A. ferrooxidans -- A. thiooxidans -- A. caldus -- Leptospirillum -- Acidiphilium -- Sulfobacillus -- Metallosphaera -- Acidianus -- A. albertensis -- Acidithiobacillus ferrivorans -- Acidithiobacillus ferridurans -- Acidithiobacillus ferriphilus -- References -- Further Reading -- 4 Bioleaching Mechanisms -- Is Bacterial Attachment Necessary? -- Electrochemical Aspects -- Metal Toxicity and Development of Metal-Tolerant Strains -- Highest Tolerance Achieved Through Adaptation (g/L) -- Copper Toxicity -- Arsenic Toxicity -- Development of Multimetal-Tolerant Strains of A. ferrooxidans -- References -- 5 Methods in Biohydrometallurgy and Developments: Dump, Heap, In Situ, and Stirred Tank Bioleaching -- Historical Perspectives -- Methods in Biohydrometallurgy -- Heap Bioleaching -- Heap microbiology -- Dump Leaching -- In Situ Leaching -- Role of Microorganisms in ISL -- Stirred Tank Bioleaching -- Microbiological Aspects Relevant to Heap and Stirred Tank Reactors -- Laboratory and Bench-Scale Tests for Developing Commercially Viable Bioleaching Processes -- References -- 6 Bioleaching of Copper and Uranium.
,
Bioleaching of Copper -- Heap Bioleaching -- Cerro Colorado -- Quebrada Blanca -- Ivan Mine -- Chuquicamata -- Carmen de Andacollo -- Dos Amigos -- La Escondida -- Spence -- Prospects for Bioleaching of Chalcopyrite Ores and Concentrates -- Microbial Succession and Dynamics -- Technology Developments in Heap and Stirred Tank Bioleaching for Copper Ores and Concentrates -- Bacterial Thin-Layer Leaching -- Geocoat and Geoleach -- Basic Aspects of the Geocoat Process -- The StickiBugs Process -- HotHeap -- SmartColumn for High-Temperature Heaps -- HeapStar Software -- Heat Generation Within Bioheaps -- Stirred Tank Bioleaching for Copper Concentrates -- Development of Heap Bioleach Technology for Chalcopyrite Ores -- Bioleaching of Uranium -- Uranium Bioleaching Mechanisms -- Microbially Mediated Redox Reactions Relevant to Uranium Extraction -- Microbial Uranium Dissolution and Precipitation -- Microbial Diversity and Biocatalyzed Reactions -- Methods for Uranium Bioleaching -- Developments in Heap and Stope Bioleaching for Uranium -- Feasibility Studies on Different Types of Uranium Ores -- Uranium Contamination and Bioremediation -- References -- 7 Bioleaching of Zinc, Nickel, and Cobalt -- Bioleaching of Zinc Sulfide Ores and Concentrates -- Indirect Bioleaching -- Heap Bioleaching -- High-Temperature Bioleaching -- Bioleaching of Nickel Ores and Concentrates -- Heap Bioleaching -- Bioleaching of Base Metal Concentrates Containing Nickel -- Bioleaching for Cobalt Extraction -- References -- 8 Biotechnology for Gold Mining, Extraction, and Waste Control -- Biogenesis of Gold Minerals -- Bioindicators and Biosensors to Locate Gold Deposits -- Microbial Production of Gold Nanoparticles -- Biooxidation of Refractory Gold-Bearing Sulfide Concentrates -- Bioreactor Engineering for Refractory Sulfide Gold Concentrates: An Indian Experience.
,
Geocoat Process for Refractory Gold-Bearing Sulfides -- Biotreatment for Refractory Carbonaceous Gold Ores -- Cyanide-Free Biodissolution of Gold Using Bacterially Produced Bisulfides -- Direct Gold Dissolution by Microbes -- Gold Biosorption and Bioaccumulation -- Biodegradation of Cyanides -- References -- 9 Electrochemical Concepts in Biohydrometallurgy -- Electrochemistry of Sulfide Minerals -- Galvanic Effects in Multimetal Sulfide Bioleaching Systems -- Effect of Applied DC Potentials and Currents on Bacterial Activity and Mineral Dissolution -- Electrobioleaching -- Electrobioleaching of Sphalerite -- Electrobioleaching of Chalcopyrite -- Electrobioleaching of Ocean Manganese Nodules -- References -- 10 Microbially Induced Mineral Beneficiation -- Bacterial Cell Wall Architecture -- What Are Bioreagents? -- Surface Chemical Aspects of Mineral-Bacteria-Solution Interfaces -- Bacterial Adhesion Relevant to Mineral Beneficiation -- Microbially Induced Beneficiation Processes -- Biobeneficiation of Pyrite, Chalcopyrite, and Arsenopyrite Using A. ferrooxidans -- Selective Removal of Pyrite From Chalcopyrite and Arsenopyrite -- Sphalerite-Galena Separation -- Bacterial Desulfurization of Coals Using A. ferrooxidans -- Biobeneficiation of Sulfide Minerals Using A. thiooxidans -- Biobeneficiation of Sulfide Minerals Using Paenibacillus polymyxa -- Biodesulfurization for Environmental Protection -- Mineral-Specific Bacterial Proteins and Exopolysaccharides for Beneficiation -- Bacterial Depyritization of Sphalerite and Galena -- Biobeneficiation of Iron Ores -- Hematite-Quartz Separation in the Presence of Anaerobic SRB, Desulfovibrio desulfuricans -- Yeast-Mediated Separation of Quartz From Hematite and Calcite -- Use of Bacillus subtilis in Iron Ore Beneficiation -- Biobeneficiation of Iron Ores Using Paenibacillus polymyxa.
,
Hematite-Kaolinite Separation Using Bacillus subtilis -- Bioremoval of Phosphorous From Hematite -- Bioenvironmental Control in Iron Ore Processing -- Biobeneficiation of Clays -- Need for Biobeneficiation -- Microbially Induced Selective Flocculation of Hematite From Kaolinite -- Biobeneficiation of Bauxite -- Microbial Calcium Removal -- Microbial Iron Removal From Bauxite -- Silica Removal Through Silicate Bacteria -- Environmental Control -- Biobeneficiation Using SRB -- References -- 11 Extended Applications of Metals Biotechnology -- Reductive Bioleaching -- Bioprocessing of REE -- Bioprocessing of Industrial Wastes and Electronic Scrap -- Bioleaching of Smelter Slags and Flue Dust -- Bioleaching of Fly Ash -- Bioleaching of Spent Catalysts -- Bioleaching of Battery Wastes -- Bioleaching of Electronic Wastes -- Bioprocessing of Ocean Nodules and Polymetallic Ores -- Bioleaching of Ocean Ferromanganese Nodules -- Bioleaching of Polymetallic Sulfides and Shales -- Use of Heterotrophic Organisms in Biohydrometallurgy -- References -- 12 Biofouling and Microbially Influenced Corrosion -- Relevant Microorganisms and Environmental Parameters -- General Mechanisms in MIC -- MIC of Important Structural Materials -- Bacterial Adhesion and Biofilm Formation -- Detailed Mechanisms of MIC in Presence of SRB -- Biofouling and MIC of Stainless Steels -- Microbially Induced Concrete Deterioration and Corrosion -- MIC-Failure Analysis, Prevention, and Control -- References -- 13 Microbial Aspects of Acid Mine Drainage-Mining Environmental Pollution and Control -- Chemistry and Types of AMD -- Microbiology of AMD -- Tests for Prediction of Acid Drainage -- Experimental Determination of AP and Role of Acidophiles in Generation of Acid Drainage From Sulfide Ores and Tailings -- Prevention, Control, and Remediation of Acid Drainage -- Bioreactor Processes.
,
Case Studies of Industrial AMD Remediation -- Case Study 1: The Wheal Jane Mine, Carnon Valley, Cornwall, UK -- Case Study 2: Doe Run West Fork Mine -- Case Study 3: Lilly/Orphan Boy Mine in Situ Bioreactor -- Case Study 4: Integrated Bioreactor System at Surething Mine -- Case Study 5: Use of Permeable Reactive barriers -- References -- 14 Experimental and Research Methods in Metals Biotechnology -- Isolation, Evaluation, and Characterization of Mining Microorganisms -- Isolation of Acidophilic Chemolithotrophs -- Growth Kinetics -- Estimation of Iron -- Estimation of Sulfate Concentration -- Basic Microbiological Techniques for Enumeration of Biomining Microorganisms -- Viable Plate Count -- Turbidimetry -- Microscopic Count Using Phase Contrast Microscope -- MPN Technique -- Direct and Indirect Measurement of Microbial Biomass -- Enumeration of Mineral-Attached Bacterial Cells -- Direct Cell Count Using Fluorescent Dyes -- Immunological Methods -- Bioleaching Strategies in the Laboratory -- Shake Flask Leaching (Agitation Leaching for Ore Fines/Concentrates) -- Column Leaching (Percolation Leaching for Coarser Ores) -- Steps Involved in the Determination of Bioleaching Potential of Gold-Bearing Ores or Concentrates -- Bioremediation Studies Using SRB -- Characteristic Features of SRB -- Use of SRB to Remove Dissolved Toxic Metals -- Evaluation of Acid Production Potential of Ore Samples and Wastes -- Biological Acid Production Potential and Neutralization Potential -- Production of Bioflocculants for Environmental Remediation -- Use of Microbially Induced Mineral Beneficiation -- Preparation of Cells-Free Metabolite -- Isolation of Different Extracellular Bioreagents from CFE -- Isolation of Extracellular Protein -- Isolation of Intracellular Bacterial Protein -- Isolation of Extracellular Polysaccharide.
,
Protein Analysis by UV-Visible Spectrophotometry.
Sprache:
Englisch
Bookmarklink