Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
Access
  • 1
    Online Resource
    Online Resource
    London, [England] :Academic Press,
    UID:
    almahu_9948171414702882
    Format: 1 online resource
    Edition: Second edition.
    ISBN: 0-12-804395-4
    Note: Front Cover -- Undersea Fiber Communication Systems -- Copyright Page -- Contents -- Biographies -- Foreword by Yves Ruggeri -- Foreword by Valey Kamalov -- Foreword by Neal S. Bergano -- Preface -- Submarine cables: a strategic domain -- Why a second edition? -- Objectives and outline of the book -- References -- I. Introduction -- 1 Presentation of submarine fiber communication -- 1.1 Preamble -- 1.2 Configuration of a submarine communication system -- 1.3 Multi-terabit submarine optical technology -- 1.4 Recent and future evolution -- 1.4.1 Recent evolution of submarine cables -- 1.4.2 Future evolution of submarine networks -- References -- 2 Historical overview of submarine communication systems -- 2.1 Introduction -- 2.2 The era of telegraph on submarine cables -- 2.2.1 The early age of electric telegraph (1800-1850) -- 2.2.1.1 Morse's invention conquers the world -- 2.2.1.2 Terrestrial long haul lines -- 2.2.2 The British era of submarine cable (1850-1872) -- 2.2.2.1 Unsuccessful attempts (1850-1860) -- 2.2.2.2 The blue book of the board of trade commission -- 2.2.2.3 The British network (1863-1872) -- 2.2.3 The global network (1872-1920) -- 2.2.4 Cable and radio competition (1920-1960) -- 2.2.5 Technical and economic aspects -- 2.2.5.1 Submarine cable business overview (industries and operating companies) -- 2.2.5.2 Transmission improvements -- 2.2.5.3 Cableships and offshore work -- 2.3 The era of telephone on coaxial submarine cables -- 2.3.1 Earliest telephonic submarine cable trials -- 2.3.2 First generation of coaxial submarine cable (1950-1961) -- 2.3.3 Second generation of coaxial submarine cable (1960-1970) -- 2.3.4 Wideband submarine cables (1970-1988) -- 2.3.5 Technical and economic aspects -- 2.3.5.1 Submarine cables and telecommunications satellites -- 2.3.5.2 Network maintenance and cable protection. , 2.3.5.3 Cable ships and offshore works -- 2.4 The era of fiber optic submarine cables -- 2.4.1 From analog to digital (1976-1988) -- 2.4.2 Regenerated fiber optic submarine cable systems and consortium organizations (1986-1995) -- 2.4.3 Optical amplification and WDM technology (1995-2000) -- 2.4.4 The era of coherent technology and upgrades (2010-) -- 2.4.5 New markets and impact on the economy -- 2.4.6 Cableships and offshore works -- 2.5 Conclusion -- References -- II. Submarine System Design -- 3 Basics of incoherent and coherent digital optical communications -- 3.1 Introduction -- 3.2 Optical channel -- 3.2.1 Optical bandwidth -- 3.2.2 Optical channel capacity -- 3.2.2.1 Information and entropy -- 3.2.2.2 Communication challenge -- 3.2.2.3 Waveform communication channel capacity -- 3.2.2.4 Waveform optical channel capacity -- 3.2.3 Binary optical channel and the symbol probabilities -- 3.3 Modulation formats -- 3.3.1 Parameters to be modulated -- 3.3.2 Optical power spectrum of modulated signals -- 3.3.3 General expression for baseband power spectrum of modulated signals -- 3.3.4 On-off keying modulation formats -- 3.3.4.1 NRZ modulated signal -- 3.3.4.2 RZ modulated signal -- 3.3.4.3 Intensity modulation implementation impairments -- 3.3.5 Pure phase modulations -- 3.3.5.1 2-QAM binary phase-shift keying -- 3.3.5.2 4-QAM quadrature phase-shift keying -- 3.3.5.3 Line width and phase diffusion limitation -- 3.3.6 Quadrature amplitude modulation -- 3.4 Noise and signal and noise interplays -- 3.4.1 Optical signal-to-noise ratio and noise factor -- 3.4.2 Photodetector sensitivity and optical-to-electrical signal conversion -- 3.4.3 Fundamental quantum noise -- 3.4.3.1 Shot noise -- 3.4.3.2 Signal against optical noise beating -- 3.4.3.3 Interpretation of shot noise as a beat noise. , 3.4.3.4 Quantum noise as reference noise level for the optical intensity noise -- 3.4.3.5 Quantum noise as reference noise level for the optical field noise -- 3.4.4 Optical amplification noise -- 3.4.4.1 Noise addition necessity in optical amplification -- 3.4.4.2 Optical amplifier minimum noise addition -- 3.4.4.3 Amplifier excess of noise -- 3.4.4.4 Example of the laser amplifier -- 3.4.5 Influence of gain and loss distribution -- 3.4.5.1 Noise factor of a distributed gain and loss medium -- 3.4.5.2 Noise factor of a purely attenuating medium -- 3.4.5.3 Noise reduction by gain distribution -- 3.4.6 Optical noise accumulation -- 3.4.6.1 Single amplifier noise factor -- 3.4.6.2 Noise factor of a cascade of fibers and amplifiers -- 3.4.7 Signal and noise interplays -- 3.4.7.1 Signal against noise beating -- 3.4.7.2 Optical noise against optical noise beating -- 3.4.7.3 Nonlinear signal and noise interplays -- 3.4.8 Additional electrical noises -- 3.4.8.1 Thermal noise -- 3.4.8.2 Dark current noise -- 3.5 Direct detection (incoherent) optical communications -- 3.5.1 Definitions -- 3.5.1.1 Electrical signal-to-noise ratio definition -- 3.5.1.2 Bit error ratio and receiver sensitivity -- 3.5.2 Ideal shot noise limited receiver -- 3.5.2.1 Signal-to-noise ratio -- 3.5.2.2 Bit error rate and receiver sensitivity -- 3.5.3 Amplifier less thermal noise limited detection -- 3.5.3.1 Signal-to-noise ratio -- 3.5.3.2 Bit error rate and receiver sensitivity -- 3.5.4 Detection of preamplified optical signal -- 3.5.4.1 Electrical signal-to-noise ratio -- 3.5.4.2 Bit error rate and receiver sensitivity -- 3.6 Coherent optical communications -- 3.6.1 Principle of a coherent receiver -- 3.6.2 Single quadrature measurement and balance homodyne detection -- 3.6.2.1 Idealistic quantum receivers for BPSK antipodal signals -- 3.6.2.2 2×2 balanced optical coupler. , 3.6.2.3 Single quadrature, balanced homodyne detection arrangement -- 3.6.2.4 Balanced homodyne detection and BPSK receiver fundamental limitation -- 3.6.3 Double quadrature measurement by double balance heterodyne detection -- 3.6.3.1 Double quadrature measurement receiver arrangement -- 3.6.3.2 Double quadrature measurement receiver and QPSK fundamental limitation -- 3.6.3.3 Quadrature amplitude modulation receiver performance -- 3.6.3.4 Actual receiver limitation -- Acknowledgments -- List of acronyms and abbreviations -- References -- 4 Optical amplification -- 4.1 Introduction -- 4.2 EDFA amplification principles -- 4.2.1 Basic principles -- 4.2.2 Influence of the glass host -- 4.2.3 Basic characteristics of EDFAs -- 4.2.4 Fundamental general model -- 4.2.5 Standard confined-doping model -- 4.2.6 Fiber parameters -- 4.2.7 Dynamics behavior -- 4.2.8 Noise characteristics -- 4.3 Characteristics for submarine systems -- 4.3.1 Design for high noise performance -- 4.3.2 Polarization-dependent loss -- 4.3.3 Polarization effects occurring in the doped fibers -- 4.3.4 Impact of pump polarization on PDG -- 4.3.5 Spectral hole burning -- 4.3.6 Modeling of spectral hole burning -- 4.4 EDFA optimization for Long-haul operation -- 4.4.1 Operation with dark fibers -- 4.4.2 Operation with WDM signal input spectrum -- 4.4.3 Gain bandwidth -- 4.4.4 Glass composition -- 4.4.5 Impact of gain excursion on output OSNR -- 4.4.6 Gain equalization -- 4.5 Engineering features -- 4.5.1 Power consumption -- 4.5.2 Pumping technology -- 4.5.3 Submarine engineering specificities -- 4.6 Operation with L-band EDFAs -- 4.6.1 System performance -- 4.6.2 Field implementation issues -- 4.6.3 C+L band systems -- 4.6.4 Efficient C+L architectures -- 4.7 Implementation of Raman amplification -- 4.7.1 Principle of Raman amplification. , 4.7.2 Practical implementation as EDFA preamplification -- 4.7.3 All-Raman amplified submarine links -- 4.7.4 Raman implementation in unrepeated systems -- 4.8 Further amplification perspectives -- References -- 5 Ultra-long haul submarine transmission -- 5.1 Introduction -- 5.2 Chromatic dispersion and nonlinear effects -- 5.2.1 Transmission constraints, attenuation, chromatic dispersion, and polarization mode dispersion -- 5.2.2 Fiber infrastructure -- 5.2.2.1 First-generation single-channel systems -- 5.2.2.2 First-generation WDM systems -- 5.2.2.3 10Gbit/s WDM systems -- 5.2.2.4 Coherent submarine systems designed for 100Gbit/s and above -- 5.2.2.5 Nonlinear effect for +D only system -- 5.2.2.6 Additive white Gaussian noise for designing submarine systems -- 5.3 Modulation format and coherent receiver -- 5.3.1 Modulation format -- 5.3.2 Coherent receiver description -- 5.4 Key features of long-haul transmission systems -- 5.4.1 Technical challenge: high capacity per optical fiber -- 5.4.2 Optical signal-to-noise ratio -- 5.4.2.1 OSNR-based Q factor: definition -- Link between Q² and signal-to-noise ratio -- Link between SNR and OSNR -- OSNR definition -- Link between Q² and OSNR -- 5.4.2.2 OSNR degradation due to cable repairs and component aging -- 5.4.2.3 OSNR evolution for a naked cable -- 5.4.3 Propagation impairment -- 5.4.3.1 Transmission impairment due to nonlinear effects -- 5.4.3.2 Time-varying system performance -- 5.4.4 Repeater supervisory -- 5.4.5 Power budget table and typical repeater spacing -- 5.4.5.1 Power budget table -- 5.4.5.2 Typical repeater spacing -- 5.5 Gain equalization -- 5.5.1 Power preemphasis -- 5.5.2 Fixed gain equalizer -- 5.5.2.1 Need for FGEQ in very long-haul WDM transmissions -- 5.5.2.2 Optimum spectral response of the FGEQs -- 5.5.3 Tuneable gain equalizer -- 5.5.4 Impact of nonoptimal gain equalization. , 5.6 Transmission systems.
    Additional Edition: ISBN 0-12-804269-9
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Amsterdam :Elsevier,
    UID:
    almafu_BV044390207
    Format: 1 Online-Ressource (669 Seiten).
    Edition: Second edition
    ISBN: 978-0-12-804395-0 , 0-12-804395-4 , 978-0-12-804269-4 , 0-12-804269-9
    Content: Since publication of the 1st edition in 2002, there has been a deep evolution of the global communication network with the entry of submarine cables in the Terabit era. Thanks to optical technologies, the transmission on a single fiber can achieve 1 billion simultaneous phone calls across the ocean! Modern submarine optical cables are fueling the global internet backbone, surpassing by far all alternative techniques. This new edition of Undersea Fiber Communication Systems provides a detailed explanation of all technical aspects of undersea communications systems, with an emphasis on the most recent breakthroughs of optical submarine cable technologies. This fully updated new edition is the best resource for demystifying enabling optical technologies, equipment, operations, up to marine installations, and is an essential reference for those in contact with this field. Each chapter of the book is written by key experts of their domain. The book assembles in a complementary way the contributions of authors from key suppliers acting in the domain, such as Alcatel-Lucent, Ciena, NEC, TE-Subcom, Xtera, from consultant and operators such as Axiom, OSI, Orange, and from University and organization references such as TelecomParisTech, and Suboptic. This has ensured that the overall topics of submarine telecommunications is treated in a quite ecumenical, complete and un-biased approach
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 9780128042694
    Language: English
    Keywords: Optische Nachrichtenübertragung ; Unterwasser ; Glasfaserkabel ; Unterwasser
    URL: Volltext  (URL des Erstveröffentlichers)
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    London, [England] :Academic Press,
    UID:
    edocfu_9960074173102883
    Format: 1 online resource
    Edition: Second edition.
    ISBN: 0-12-804395-4
    Note: Front Cover -- Undersea Fiber Communication Systems -- Copyright Page -- Contents -- Biographies -- Foreword by Yves Ruggeri -- Foreword by Valey Kamalov -- Foreword by Neal S. Bergano -- Preface -- Submarine cables: a strategic domain -- Why a second edition? -- Objectives and outline of the book -- References -- I. Introduction -- 1 Presentation of submarine fiber communication -- 1.1 Preamble -- 1.2 Configuration of a submarine communication system -- 1.3 Multi-terabit submarine optical technology -- 1.4 Recent and future evolution -- 1.4.1 Recent evolution of submarine cables -- 1.4.2 Future evolution of submarine networks -- References -- 2 Historical overview of submarine communication systems -- 2.1 Introduction -- 2.2 The era of telegraph on submarine cables -- 2.2.1 The early age of electric telegraph (1800-1850) -- 2.2.1.1 Morse's invention conquers the world -- 2.2.1.2 Terrestrial long haul lines -- 2.2.2 The British era of submarine cable (1850-1872) -- 2.2.2.1 Unsuccessful attempts (1850-1860) -- 2.2.2.2 The blue book of the board of trade commission -- 2.2.2.3 The British network (1863-1872) -- 2.2.3 The global network (1872-1920) -- 2.2.4 Cable and radio competition (1920-1960) -- 2.2.5 Technical and economic aspects -- 2.2.5.1 Submarine cable business overview (industries and operating companies) -- 2.2.5.2 Transmission improvements -- 2.2.5.3 Cableships and offshore work -- 2.3 The era of telephone on coaxial submarine cables -- 2.3.1 Earliest telephonic submarine cable trials -- 2.3.2 First generation of coaxial submarine cable (1950-1961) -- 2.3.3 Second generation of coaxial submarine cable (1960-1970) -- 2.3.4 Wideband submarine cables (1970-1988) -- 2.3.5 Technical and economic aspects -- 2.3.5.1 Submarine cables and telecommunications satellites -- 2.3.5.2 Network maintenance and cable protection. , 2.3.5.3 Cable ships and offshore works -- 2.4 The era of fiber optic submarine cables -- 2.4.1 From analog to digital (1976-1988) -- 2.4.2 Regenerated fiber optic submarine cable systems and consortium organizations (1986-1995) -- 2.4.3 Optical amplification and WDM technology (1995-2000) -- 2.4.4 The era of coherent technology and upgrades (2010-) -- 2.4.5 New markets and impact on the economy -- 2.4.6 Cableships and offshore works -- 2.5 Conclusion -- References -- II. Submarine System Design -- 3 Basics of incoherent and coherent digital optical communications -- 3.1 Introduction -- 3.2 Optical channel -- 3.2.1 Optical bandwidth -- 3.2.2 Optical channel capacity -- 3.2.2.1 Information and entropy -- 3.2.2.2 Communication challenge -- 3.2.2.3 Waveform communication channel capacity -- 3.2.2.4 Waveform optical channel capacity -- 3.2.3 Binary optical channel and the symbol probabilities -- 3.3 Modulation formats -- 3.3.1 Parameters to be modulated -- 3.3.2 Optical power spectrum of modulated signals -- 3.3.3 General expression for baseband power spectrum of modulated signals -- 3.3.4 On-off keying modulation formats -- 3.3.4.1 NRZ modulated signal -- 3.3.4.2 RZ modulated signal -- 3.3.4.3 Intensity modulation implementation impairments -- 3.3.5 Pure phase modulations -- 3.3.5.1 2-QAM binary phase-shift keying -- 3.3.5.2 4-QAM quadrature phase-shift keying -- 3.3.5.3 Line width and phase diffusion limitation -- 3.3.6 Quadrature amplitude modulation -- 3.4 Noise and signal and noise interplays -- 3.4.1 Optical signal-to-noise ratio and noise factor -- 3.4.2 Photodetector sensitivity and optical-to-electrical signal conversion -- 3.4.3 Fundamental quantum noise -- 3.4.3.1 Shot noise -- 3.4.3.2 Signal against optical noise beating -- 3.4.3.3 Interpretation of shot noise as a beat noise. , 3.4.3.4 Quantum noise as reference noise level for the optical intensity noise -- 3.4.3.5 Quantum noise as reference noise level for the optical field noise -- 3.4.4 Optical amplification noise -- 3.4.4.1 Noise addition necessity in optical amplification -- 3.4.4.2 Optical amplifier minimum noise addition -- 3.4.4.3 Amplifier excess of noise -- 3.4.4.4 Example of the laser amplifier -- 3.4.5 Influence of gain and loss distribution -- 3.4.5.1 Noise factor of a distributed gain and loss medium -- 3.4.5.2 Noise factor of a purely attenuating medium -- 3.4.5.3 Noise reduction by gain distribution -- 3.4.6 Optical noise accumulation -- 3.4.6.1 Single amplifier noise factor -- 3.4.6.2 Noise factor of a cascade of fibers and amplifiers -- 3.4.7 Signal and noise interplays -- 3.4.7.1 Signal against noise beating -- 3.4.7.2 Optical noise against optical noise beating -- 3.4.7.3 Nonlinear signal and noise interplays -- 3.4.8 Additional electrical noises -- 3.4.8.1 Thermal noise -- 3.4.8.2 Dark current noise -- 3.5 Direct detection (incoherent) optical communications -- 3.5.1 Definitions -- 3.5.1.1 Electrical signal-to-noise ratio definition -- 3.5.1.2 Bit error ratio and receiver sensitivity -- 3.5.2 Ideal shot noise limited receiver -- 3.5.2.1 Signal-to-noise ratio -- 3.5.2.2 Bit error rate and receiver sensitivity -- 3.5.3 Amplifier less thermal noise limited detection -- 3.5.3.1 Signal-to-noise ratio -- 3.5.3.2 Bit error rate and receiver sensitivity -- 3.5.4 Detection of preamplified optical signal -- 3.5.4.1 Electrical signal-to-noise ratio -- 3.5.4.2 Bit error rate and receiver sensitivity -- 3.6 Coherent optical communications -- 3.6.1 Principle of a coherent receiver -- 3.6.2 Single quadrature measurement and balance homodyne detection -- 3.6.2.1 Idealistic quantum receivers for BPSK antipodal signals -- 3.6.2.2 2×2 balanced optical coupler. , 3.6.2.3 Single quadrature, balanced homodyne detection arrangement -- 3.6.2.4 Balanced homodyne detection and BPSK receiver fundamental limitation -- 3.6.3 Double quadrature measurement by double balance heterodyne detection -- 3.6.3.1 Double quadrature measurement receiver arrangement -- 3.6.3.2 Double quadrature measurement receiver and QPSK fundamental limitation -- 3.6.3.3 Quadrature amplitude modulation receiver performance -- 3.6.3.4 Actual receiver limitation -- Acknowledgments -- List of acronyms and abbreviations -- References -- 4 Optical amplification -- 4.1 Introduction -- 4.2 EDFA amplification principles -- 4.2.1 Basic principles -- 4.2.2 Influence of the glass host -- 4.2.3 Basic characteristics of EDFAs -- 4.2.4 Fundamental general model -- 4.2.5 Standard confined-doping model -- 4.2.6 Fiber parameters -- 4.2.7 Dynamics behavior -- 4.2.8 Noise characteristics -- 4.3 Characteristics for submarine systems -- 4.3.1 Design for high noise performance -- 4.3.2 Polarization-dependent loss -- 4.3.3 Polarization effects occurring in the doped fibers -- 4.3.4 Impact of pump polarization on PDG -- 4.3.5 Spectral hole burning -- 4.3.6 Modeling of spectral hole burning -- 4.4 EDFA optimization for Long-haul operation -- 4.4.1 Operation with dark fibers -- 4.4.2 Operation with WDM signal input spectrum -- 4.4.3 Gain bandwidth -- 4.4.4 Glass composition -- 4.4.5 Impact of gain excursion on output OSNR -- 4.4.6 Gain equalization -- 4.5 Engineering features -- 4.5.1 Power consumption -- 4.5.2 Pumping technology -- 4.5.3 Submarine engineering specificities -- 4.6 Operation with L-band EDFAs -- 4.6.1 System performance -- 4.6.2 Field implementation issues -- 4.6.3 C+L band systems -- 4.6.4 Efficient C+L architectures -- 4.7 Implementation of Raman amplification -- 4.7.1 Principle of Raman amplification. , 4.7.2 Practical implementation as EDFA preamplification -- 4.7.3 All-Raman amplified submarine links -- 4.7.4 Raman implementation in unrepeated systems -- 4.8 Further amplification perspectives -- References -- 5 Ultra-long haul submarine transmission -- 5.1 Introduction -- 5.2 Chromatic dispersion and nonlinear effects -- 5.2.1 Transmission constraints, attenuation, chromatic dispersion, and polarization mode dispersion -- 5.2.2 Fiber infrastructure -- 5.2.2.1 First-generation single-channel systems -- 5.2.2.2 First-generation WDM systems -- 5.2.2.3 10Gbit/s WDM systems -- 5.2.2.4 Coherent submarine systems designed for 100Gbit/s and above -- 5.2.2.5 Nonlinear effect for +D only system -- 5.2.2.6 Additive white Gaussian noise for designing submarine systems -- 5.3 Modulation format and coherent receiver -- 5.3.1 Modulation format -- 5.3.2 Coherent receiver description -- 5.4 Key features of long-haul transmission systems -- 5.4.1 Technical challenge: high capacity per optical fiber -- 5.4.2 Optical signal-to-noise ratio -- 5.4.2.1 OSNR-based Q factor: definition -- Link between Q² and signal-to-noise ratio -- Link between SNR and OSNR -- OSNR definition -- Link between Q² and OSNR -- 5.4.2.2 OSNR degradation due to cable repairs and component aging -- 5.4.2.3 OSNR evolution for a naked cable -- 5.4.3 Propagation impairment -- 5.4.3.1 Transmission impairment due to nonlinear effects -- 5.4.3.2 Time-varying system performance -- 5.4.4 Repeater supervisory -- 5.4.5 Power budget table and typical repeater spacing -- 5.4.5.1 Power budget table -- 5.4.5.2 Typical repeater spacing -- 5.5 Gain equalization -- 5.5.1 Power preemphasis -- 5.5.2 Fixed gain equalizer -- 5.5.2.1 Need for FGEQ in very long-haul WDM transmissions -- 5.5.2.2 Optimum spectral response of the FGEQs -- 5.5.3 Tuneable gain equalizer -- 5.5.4 Impact of nonoptimal gain equalization. , 5.6 Transmission systems.
    Additional Edition: ISBN 0-12-804269-9
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    London, [England] :Academic Press,
    UID:
    edoccha_9960074173102883
    Format: 1 online resource
    Edition: Second edition.
    ISBN: 0-12-804395-4
    Note: Front Cover -- Undersea Fiber Communication Systems -- Copyright Page -- Contents -- Biographies -- Foreword by Yves Ruggeri -- Foreword by Valey Kamalov -- Foreword by Neal S. Bergano -- Preface -- Submarine cables: a strategic domain -- Why a second edition? -- Objectives and outline of the book -- References -- I. Introduction -- 1 Presentation of submarine fiber communication -- 1.1 Preamble -- 1.2 Configuration of a submarine communication system -- 1.3 Multi-terabit submarine optical technology -- 1.4 Recent and future evolution -- 1.4.1 Recent evolution of submarine cables -- 1.4.2 Future evolution of submarine networks -- References -- 2 Historical overview of submarine communication systems -- 2.1 Introduction -- 2.2 The era of telegraph on submarine cables -- 2.2.1 The early age of electric telegraph (1800-1850) -- 2.2.1.1 Morse's invention conquers the world -- 2.2.1.2 Terrestrial long haul lines -- 2.2.2 The British era of submarine cable (1850-1872) -- 2.2.2.1 Unsuccessful attempts (1850-1860) -- 2.2.2.2 The blue book of the board of trade commission -- 2.2.2.3 The British network (1863-1872) -- 2.2.3 The global network (1872-1920) -- 2.2.4 Cable and radio competition (1920-1960) -- 2.2.5 Technical and economic aspects -- 2.2.5.1 Submarine cable business overview (industries and operating companies) -- 2.2.5.2 Transmission improvements -- 2.2.5.3 Cableships and offshore work -- 2.3 The era of telephone on coaxial submarine cables -- 2.3.1 Earliest telephonic submarine cable trials -- 2.3.2 First generation of coaxial submarine cable (1950-1961) -- 2.3.3 Second generation of coaxial submarine cable (1960-1970) -- 2.3.4 Wideband submarine cables (1970-1988) -- 2.3.5 Technical and economic aspects -- 2.3.5.1 Submarine cables and telecommunications satellites -- 2.3.5.2 Network maintenance and cable protection. , 2.3.5.3 Cable ships and offshore works -- 2.4 The era of fiber optic submarine cables -- 2.4.1 From analog to digital (1976-1988) -- 2.4.2 Regenerated fiber optic submarine cable systems and consortium organizations (1986-1995) -- 2.4.3 Optical amplification and WDM technology (1995-2000) -- 2.4.4 The era of coherent technology and upgrades (2010-) -- 2.4.5 New markets and impact on the economy -- 2.4.6 Cableships and offshore works -- 2.5 Conclusion -- References -- II. Submarine System Design -- 3 Basics of incoherent and coherent digital optical communications -- 3.1 Introduction -- 3.2 Optical channel -- 3.2.1 Optical bandwidth -- 3.2.2 Optical channel capacity -- 3.2.2.1 Information and entropy -- 3.2.2.2 Communication challenge -- 3.2.2.3 Waveform communication channel capacity -- 3.2.2.4 Waveform optical channel capacity -- 3.2.3 Binary optical channel and the symbol probabilities -- 3.3 Modulation formats -- 3.3.1 Parameters to be modulated -- 3.3.2 Optical power spectrum of modulated signals -- 3.3.3 General expression for baseband power spectrum of modulated signals -- 3.3.4 On-off keying modulation formats -- 3.3.4.1 NRZ modulated signal -- 3.3.4.2 RZ modulated signal -- 3.3.4.3 Intensity modulation implementation impairments -- 3.3.5 Pure phase modulations -- 3.3.5.1 2-QAM binary phase-shift keying -- 3.3.5.2 4-QAM quadrature phase-shift keying -- 3.3.5.3 Line width and phase diffusion limitation -- 3.3.6 Quadrature amplitude modulation -- 3.4 Noise and signal and noise interplays -- 3.4.1 Optical signal-to-noise ratio and noise factor -- 3.4.2 Photodetector sensitivity and optical-to-electrical signal conversion -- 3.4.3 Fundamental quantum noise -- 3.4.3.1 Shot noise -- 3.4.3.2 Signal against optical noise beating -- 3.4.3.3 Interpretation of shot noise as a beat noise. , 3.4.3.4 Quantum noise as reference noise level for the optical intensity noise -- 3.4.3.5 Quantum noise as reference noise level for the optical field noise -- 3.4.4 Optical amplification noise -- 3.4.4.1 Noise addition necessity in optical amplification -- 3.4.4.2 Optical amplifier minimum noise addition -- 3.4.4.3 Amplifier excess of noise -- 3.4.4.4 Example of the laser amplifier -- 3.4.5 Influence of gain and loss distribution -- 3.4.5.1 Noise factor of a distributed gain and loss medium -- 3.4.5.2 Noise factor of a purely attenuating medium -- 3.4.5.3 Noise reduction by gain distribution -- 3.4.6 Optical noise accumulation -- 3.4.6.1 Single amplifier noise factor -- 3.4.6.2 Noise factor of a cascade of fibers and amplifiers -- 3.4.7 Signal and noise interplays -- 3.4.7.1 Signal against noise beating -- 3.4.7.2 Optical noise against optical noise beating -- 3.4.7.3 Nonlinear signal and noise interplays -- 3.4.8 Additional electrical noises -- 3.4.8.1 Thermal noise -- 3.4.8.2 Dark current noise -- 3.5 Direct detection (incoherent) optical communications -- 3.5.1 Definitions -- 3.5.1.1 Electrical signal-to-noise ratio definition -- 3.5.1.2 Bit error ratio and receiver sensitivity -- 3.5.2 Ideal shot noise limited receiver -- 3.5.2.1 Signal-to-noise ratio -- 3.5.2.2 Bit error rate and receiver sensitivity -- 3.5.3 Amplifier less thermal noise limited detection -- 3.5.3.1 Signal-to-noise ratio -- 3.5.3.2 Bit error rate and receiver sensitivity -- 3.5.4 Detection of preamplified optical signal -- 3.5.4.1 Electrical signal-to-noise ratio -- 3.5.4.2 Bit error rate and receiver sensitivity -- 3.6 Coherent optical communications -- 3.6.1 Principle of a coherent receiver -- 3.6.2 Single quadrature measurement and balance homodyne detection -- 3.6.2.1 Idealistic quantum receivers for BPSK antipodal signals -- 3.6.2.2 2×2 balanced optical coupler. , 3.6.2.3 Single quadrature, balanced homodyne detection arrangement -- 3.6.2.4 Balanced homodyne detection and BPSK receiver fundamental limitation -- 3.6.3 Double quadrature measurement by double balance heterodyne detection -- 3.6.3.1 Double quadrature measurement receiver arrangement -- 3.6.3.2 Double quadrature measurement receiver and QPSK fundamental limitation -- 3.6.3.3 Quadrature amplitude modulation receiver performance -- 3.6.3.4 Actual receiver limitation -- Acknowledgments -- List of acronyms and abbreviations -- References -- 4 Optical amplification -- 4.1 Introduction -- 4.2 EDFA amplification principles -- 4.2.1 Basic principles -- 4.2.2 Influence of the glass host -- 4.2.3 Basic characteristics of EDFAs -- 4.2.4 Fundamental general model -- 4.2.5 Standard confined-doping model -- 4.2.6 Fiber parameters -- 4.2.7 Dynamics behavior -- 4.2.8 Noise characteristics -- 4.3 Characteristics for submarine systems -- 4.3.1 Design for high noise performance -- 4.3.2 Polarization-dependent loss -- 4.3.3 Polarization effects occurring in the doped fibers -- 4.3.4 Impact of pump polarization on PDG -- 4.3.5 Spectral hole burning -- 4.3.6 Modeling of spectral hole burning -- 4.4 EDFA optimization for Long-haul operation -- 4.4.1 Operation with dark fibers -- 4.4.2 Operation with WDM signal input spectrum -- 4.4.3 Gain bandwidth -- 4.4.4 Glass composition -- 4.4.5 Impact of gain excursion on output OSNR -- 4.4.6 Gain equalization -- 4.5 Engineering features -- 4.5.1 Power consumption -- 4.5.2 Pumping technology -- 4.5.3 Submarine engineering specificities -- 4.6 Operation with L-band EDFAs -- 4.6.1 System performance -- 4.6.2 Field implementation issues -- 4.6.3 C+L band systems -- 4.6.4 Efficient C+L architectures -- 4.7 Implementation of Raman amplification -- 4.7.1 Principle of Raman amplification. , 4.7.2 Practical implementation as EDFA preamplification -- 4.7.3 All-Raman amplified submarine links -- 4.7.4 Raman implementation in unrepeated systems -- 4.8 Further amplification perspectives -- References -- 5 Ultra-long haul submarine transmission -- 5.1 Introduction -- 5.2 Chromatic dispersion and nonlinear effects -- 5.2.1 Transmission constraints, attenuation, chromatic dispersion, and polarization mode dispersion -- 5.2.2 Fiber infrastructure -- 5.2.2.1 First-generation single-channel systems -- 5.2.2.2 First-generation WDM systems -- 5.2.2.3 10Gbit/s WDM systems -- 5.2.2.4 Coherent submarine systems designed for 100Gbit/s and above -- 5.2.2.5 Nonlinear effect for +D only system -- 5.2.2.6 Additive white Gaussian noise for designing submarine systems -- 5.3 Modulation format and coherent receiver -- 5.3.1 Modulation format -- 5.3.2 Coherent receiver description -- 5.4 Key features of long-haul transmission systems -- 5.4.1 Technical challenge: high capacity per optical fiber -- 5.4.2 Optical signal-to-noise ratio -- 5.4.2.1 OSNR-based Q factor: definition -- Link between Q² and signal-to-noise ratio -- Link between SNR and OSNR -- OSNR definition -- Link between Q² and OSNR -- 5.4.2.2 OSNR degradation due to cable repairs and component aging -- 5.4.2.3 OSNR evolution for a naked cable -- 5.4.3 Propagation impairment -- 5.4.3.1 Transmission impairment due to nonlinear effects -- 5.4.3.2 Time-varying system performance -- 5.4.4 Repeater supervisory -- 5.4.5 Power budget table and typical repeater spacing -- 5.4.5.1 Power budget table -- 5.4.5.2 Typical repeater spacing -- 5.5 Gain equalization -- 5.5.1 Power preemphasis -- 5.5.2 Fixed gain equalizer -- 5.5.2.1 Need for FGEQ in very long-haul WDM transmissions -- 5.5.2.2 Optimum spectral response of the FGEQs -- 5.5.3 Tuneable gain equalizer -- 5.5.4 Impact of nonoptimal gain equalization. , 5.6 Transmission systems.
    Additional Edition: ISBN 0-12-804269-9
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Amsterdam :Elsevier,
    UID:
    edocfu_BV044390207
    Format: 1 Online-Ressource (669 Seiten).
    Edition: Second edition
    ISBN: 978-0-12-804395-0 , 0-12-804395-4 , 978-0-12-804269-4 , 0-12-804269-9
    Content: Since publication of the 1st edition in 2002, there has been a deep evolution of the global communication network with the entry of submarine cables in the Terabit era. Thanks to optical technologies, the transmission on a single fiber can achieve 1 billion simultaneous phone calls across the ocean! Modern submarine optical cables are fueling the global internet backbone, surpassing by far all alternative techniques. This new edition of Undersea Fiber Communication Systems provides a detailed explanation of all technical aspects of undersea communications systems, with an emphasis on the most recent breakthroughs of optical submarine cable technologies. This fully updated new edition is the best resource for demystifying enabling optical technologies, equipment, operations, up to marine installations, and is an essential reference for those in contact with this field. Each chapter of the book is written by key experts of their domain. The book assembles in a complementary way the contributions of authors from key suppliers acting in the domain, such as Alcatel-Lucent, Ciena, NEC, TE-Subcom, Xtera, from consultant and operators such as Axiom, OSI, Orange, and from University and organization references such as TelecomParisTech, and Suboptic. This has ensured that the overall topics of submarine telecommunications is treated in a quite ecumenical, complete and un-biased approach
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 9780128042694
    Language: English
    Keywords: Optische Nachrichtenübertragung ; Unterwasser ; Glasfaserkabel ; Unterwasser
    URL: Volltext  (URL des Erstveröffentlichers)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    London, [England] :Academic Press,
    UID:
    almahu_9948325515002882
    Format: 1 online resource (703 pages) : , illustrations
    Edition: Second edition.
    ISBN: 9780128043950 (e-book)
    Additional Edition: Print version: Undersea fiber communication systems. London, [England] : Academic Press, c2016 ISBN 9780128042694
    Language: English
    Keywords: Electronic books. ; Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9780128023952?
Did you mean 9780128033920?
Did you mean 9780128044957?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages