Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Amsterdam, [Netherlands] :Butterworth-Heinemann,
    UID:
    almafu_9960074121502883
    Umfang: 1 online resource (424 pages) : , illustrations, graphs
    ISBN: 9780128105535 , 0128105534
    Anmerkung: Front Cover -- ADVANCES IN ROCK-SUPPORT AND GEOTECHNICAL ENGINEERING -- ADVANCES IN ROCK-SUPPORT AND GEOTECHNICAL ENGINEERING -- Copyright -- Contents -- Biography -- Preface -- Acknowledgments -- 1 - Rock Testing -- 1. INSTABILITY CHARACTERISTICS OF A SINGLE SANDSTONE PLATE -- 1.1 Introduction -- 1.2 Loading Experiment of Rock Plate -- 1.2.1 Samples of Rock Plate -- 1.2.2 Loading Equipment -- 1.2.3 Acoustic Equipment and Data Acquisition System -- 1.3 Experiment Results and Analysis -- 1.3.1 Characteristic of Force-Displacement Curve -- 1.3.2 Acoustic Characteristic of the Rock-Plate Failure -- 1.4 Numerical Simulations of the Loading Test -- 1.4.1 Parameters Calibration of the Rock Plate -- 1.4.2 The Computational Model -- 1.4.3 Analysis of Numerical Simulation Results -- 1.5 Factors Sensitive Analysis of Rock-Arch Instability -- 1.5.1 Material Parameter Effect -- 1.5.2 Geometry Size Effect -- 1.5.3 Loading Rate and Initial Horizontal Force Effect -- 1.6 Conclusions -- 2. INSTABILITY CHARACTERISTICS OF DOUBLE-LAYER ROCK PLATES -- 2.1 Introduction -- 2.2 Experimental Design -- 2.2.1 Sandstone Samples and Test Programs -- 2.2.2 Loading Devices and Loading Modes -- 2.2.3 Ends Design and Connection Method -- 2.2.4 Test Loading and Data Acquisition System -- 2.3 Test Procedure -- 2.4 Test Results and Analysis -- 2.4.1 Characteristics of Load-Displacement Curves -- 2.4.2 Load-Time Acoustic Emission Event Rate Curves -- 2.4.3 Fracture Instability Models of Double-Layer Rock Plates -- 2.5 Conclusions -- 3. RUPTURE AND ENERGY ANALYSIS OF DOUBLE-LAYER ROCK PLATES -- 3.1 Introduction -- 3.2 Instability Experiment on Double-Layer Rock Plates -- 3.2.1 Sandstone Plates -- 3.2.2 Loading Equipment -- 3.2.3 Test Results and Analysis -- 3.3 Simulation Rupture of the Double-Layer Rock Plates -- 3.3.1 Parameters Calibration of the Rock Plates. , 3.3.2 The Computational Model -- 3.3.3 Analysis of Numerical Simulation Results -- 3.4 Numerical Test on Rupture Characteristics of Rock Plates -- 3.4.1 Friction Coefficient Effect of the Layer -- 3.4.2 Cohesive Strength Effect of the Layer -- 3.4.3 Size Effect of the Rock Plates Thickness -- 3.5 Energy Dissipation Characteristic of Double-Layer Rock Plates -- 3.5.1 Definition of Strain Energy Entropy -- 3.5.2 Energy Dissipation Characteristics of the Plates System -- 3.6 Conclusions -- 4. DOUBLE-LAYER ROCK PLATES WITH BOTH ENDS FIXED CONDITION -- 4.1 Introduction -- 4.2 Numerical Experiment of Double-Layer Rock Plates -- 4.2.1 Microparameters of the Rock Plates -- 4.2.2 Building the Computational Model -- 4.2.3 Fracture Characteristics of Double-Layer Rock Plates -- 4.3 Sensitive Factors Analysis of Double-Layer Rock Plates -- 4.3.1 Analysis of Rock Particle Radius Changing -- 4.3.2 Geometry Size Effect Analysis of Rock Plates -- 4.3.3 Analysis of Boundary Conditions Change Effect -- 4.3.4 Cohesive Strength Effect Between Two Rock Plates -- 4.4 Conclusions -- 5. VISCOELASTIC ATTENUATION PROPERTIES FOR DIFFERENT ROCKS -- 5.1 Introduction -- 5.2 Test Equipment and Experiment Principle -- 5.2.1 Test Equipment and Materials -- 5.2.2 Experiment Principle -- 5.3 Results and Discussion -- 5.3.1 Analysis of the Storage Modulus -- 5.3.2 Analysis of the Loss Modulus -- 5.3.3 Analysis of the Loss Factor -- 5.3.4 Analysis of Microstructure Characteristics -- 5.4 Conclusions -- 6. CUTTING FRACTURE CHARACTERISTICS OF SANDSTONE -- 6.1 Introduction -- 6.2 Fractal Analysis of Rock Fragmentation -- 6.3 Sandstone Cutting Test -- 6.3.1 Test Equipment and Sandstone Samples -- 6.3.2 Test Methods and Test Procedures -- 6.4 Test Results and Fractal Analysis -- 6.4.1 Cutting Debris and Screening -- 6.4.2 Fractal Analysis of Cutting Debris -- 6.5 Conclusions. , 7. ENERGY DISSIPATION CHARACTERISTICS OF SANDSTONE CUTTING -- 7.1 Introduction -- 7.2 Specific Energy Analysis of Cutting Debris -- 7.3 Computational Model and Model Process -- 7.3.1 The Computational Model -- 7.3.2 The Modeling Process -- 7.4 Rock-Cutting Energy Characteristics -- 7.4.1 Specific Energy Variation with the Cutting Velocity -- 7.4.2 Specific Energy Variation with the Cutting Depth -- 7.4.3 Acoustic Emission Variation with Cutting Velocity -- 7.4.4 Acoustic Emission Variation with the Cutting Depth -- 7.5 Conclusions -- 8. FRACTURE PROPERTIES ON THE COMPRESSIVE FAILURE OF ROCK -- 8.1 Introduction -- 8.2 Experiment Design -- 8.3 Test Sample Preparation -- 8.3.1 Sample Collection -- 8.3.2 Specimen Preparation -- 8.3.3 Procedure -- 8.4 Results and Analysis -- 8.4.1 Clean Fracture Surface -- 8.4.2 Intermediate Layer (Paper) -- 8.4.3 Failure Mechanism -- 8.5 Conclusions -- References -- Further Reading -- 2 - Rockbolting -- 1. MATHEMATICAL DERIVATION OF SLIP FACE ANGLE -- 1.1 Introduction -- 1.2 Experimental Investigations in Literature -- 1.3 Analytical Investigation -- 1.3.1 Problem Description and Assumptions -- 1.3.2 Governing Equations -- 1.3.3 The Upper Limits of Rib Face Angle and Slip Face Angle -- 1.3.4 Slip Face Angle Prediction for Known Rib Geometry -- 1.3.5 The Most Vulnerable Slip Face Angle -- 1.3.6 Occurrence of Failure Modes IIA and IIB -- 1.4 Conclusions -- 2. A MECHANICAL MODEL FOR CONE BOLTS -- 2.1 Introduction -- 2.2 Problem Description and Approach -- 2.3 Model Development -- 2.3.1 Stage 1 -- 2.3.2 Stage 2 -- 2.3.3 Stage 3 -- 2.3.4 Stage 4 -- 2.4 Comparison Between Theoretical and Experimental Results -- 2.5 The Effect of the Cone's Geometric Face Angles -- 2.6 Conclusions -- 3. EFFECT OF INTRODUCING AGGREGATE INTO GROUTING MATERIAL -- 3.1 Introduction -- 3.2 Related Theories -- 3.2.1 Fully Grouted Bolting. , 3.2.2 Failure Mode -- 3.2.3 Dilatancy Behaviors Accompanying Shearing -- 3.2.4 Conceptualization of Introduced Aggregate -- 3.3 Experimental Study -- 3.4 Potential to Reduce Gloving -- 3.5 Conclusions -- 4. OPTIMIZING SELECTION OF REBAR BOLTS -- 4.1 Introduction -- 4.2 Failure Modes of Rockbolts Under Axial Loading -- 4.3 Parallel Shear Failure -- 4.3.1 Formulation of Parallel Shear Failure -- 4.3.2 Case Study -- 4.4 Dilational Slip Failure -- 4.4.1 The Governing Equation of Dilational Slip Failure -- 4.4.2 The Most Vulnerable Slipping Surface -- 4.4.3 Experimental Study -- 4.5 Optimization of the Bolt Profile -- 4.5.1 Formulation of the Optimum Rebar Profile -- 4.5.2 Application to the Metropolitan Colliery Roadway -- 4.6 Conclusions -- 5. POISSON'S RATIO EFFECT IN PUSH AND PULL TESTING -- 5.1 Introduction -- 5.2 Poisson's Ratio Effect in Parallel Shear Failure -- 5.2.1 Linear Decay Model -- 5.2.2 Exponential Decay Model -- 5.2.3 Poisson's Ratio Effect at Peak Load -- 5.3 Poisson's Ratio Effect in Dilational Slip Failure -- 5.4 Comparison of Analytical Results With Experimental Data -- 5.5 Conclusions -- 6. STUDY ON ROCKBOLTING FAILURE MODES -- 6.1 Introduction -- 6.2 Failure Mode of a Two-Phase Material System -- 6.3 Failure Modes of Cable Bolting System -- 6.4 Interfacial Shear Failure of Rockbolt -- 6.4.1 Failure Modes of Rockbolt -- 6.4.2 Analysis of the Behavior of Rockbolt -- 6.5 Conclusion -- 7. STEEL BOLT PROFILE INFLUENCE ON BOLT LOAD TRANSFER -- 7.1 Introduction -- 7.2 Methodology and Governing Equations -- 7.3 Modeling of Fully Grouted Bolt Profiles -- 7.3.1 Stresses on the Proposed Failure Plane Due to Normal Load -- 7.3.2 Stresses on the Proposed Failure Plane Due to Shear Load -- 7.3.3 Superposition of Stress Tensor on the Failure Surface -- 7.3.4 Mohr-Coulomb Failure Along the Weakness Plane -- 7.4 Application Example. , 7.5 Conclusions -- 8. TENSILE STRESS MOBILIZATION ALONG A ROCKBOLT -- 8.1 Introduction -- 8.2 Adhesion Strength Tests -- 8.2.1 Double Shear Test Setup -- 8.2.2 Strain Gauge Installation -- 8.3 Results Analysis -- 8.3.1 Shear Load and Normal Load -- 8.3.2 The Strain Along the Deformed Bolt -- 8.3.3 Axial Stress Distribution Along the Rockbolt -- 8.4 Discussion -- 8.5 Conclusions -- References -- Further Reading -- 3 - Grouted Cable -- 1. LOAD TRANSFER MECHANISM OF FULLY GROUTED CABLE -- 1.1 Introduction -- 1.2 Load Transfer Behavior of Cables -- 1.2.1 Split-Pull/Push Tests -- 1.2.2 Single Embedment Pull Test -- 1.2.3 Double-Embedment Pull Test -- 1.2.4 Laboratory Short Encapsulation Pull Test -- 1.3 Discussion -- 1.4 Conclusions -- 2. THEORETICAL ANALYSIS OF LOAD TRANSFER MECHANICS -- 2.1 Introduction -- 2.2 Load Transfer Mechanics -- 2.2.1 Computational Formula -- 2.2.2 Test Verification -- 2.3 Discussion -- 2.4 Conclusions -- 3. IMPACTING FACTORS ON THE DESIGN FOR CABLES -- 3.1 Introduction -- 3.2 Laboratory Design -- 3.2.1 Components of the Test Rig -- 3.2.2 Dimensions of the Test Sample -- 3.2.3 Anchor Length Section -- 3.2.4 Bearing Plate -- 3.2.5 Antirotation Devices -- 3.3 Testing Procedure -- 3.3.1 Concrete Sample Preparation -- 3.3.2 Cable and Anchor Tube Installation -- 3.3.3 Setting up of the Hydraulic and Monitoring System -- 3.4 Conclusions -- 4. MECHANICAL PROPERTIES OF CEMENTITIOUS GROUT -- 4.1 Introduction -- 4.2 Experimental Program -- 4.2.1 Preparation of Samples -- 4.2.2 Testing Process -- 4.3 Results of Experiments -- 4.3.1 Processing Procedures -- 4.3.2 Stress-Strain Relationships of Samples -- 4.3.2.1 W/C RATIO OF 0.35 -- 4.3.2.2 W/C RATIO OF 0.38 -- 4.3.2.3 W/C RATIO OF 0.42 -- 4.3.2.4 W/C RATIO OF 0.45 -- 4.3.3 Failure Modes of Grout Samples -- 4.3.3.1 CYLINDRICAL SAMPLES -- 4.3.3.2 CUBIC SAMPLES -- 4.4 Analysis and Discussions. , 4.4.1 Effect of W/C Ratio.
    Weitere Ausg.: ISBN 9780128105528
    Weitere Ausg.: ISBN 0128105526
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Buch
    Buch
    Oxford : Butterworth-Heinemann, an imprint of Elsevier
    UID:
    b3kat_BV045202378
    Umfang: xi, 410 Seiten , Illustrationen
    ISBN: 9780128105528
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 978-0-12-810553-5
    Sprache: Englisch
    RVK:
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780128150528?
Meinten Sie 9780128105122?
Meinten Sie 9780128005521?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz