UID:
almafu_9961089645002883
Umfang:
1 online resource (632 pages)
ISBN:
9780128123256
,
0128123257
,
9780128121542
,
0128121548
Inhalt:
"Smart Power Distribution Systems: Control, Communication, and Optimization explains how diverse technologies work to build and maintain smart grids around the globe. Yang, Yang and Li present the most recent advances in the control, communication and optimization of smart grids and provide unique insight into power system control, sensing and communication, and optimization technologies. The book covers control challenges for renewable energy and smart grids, communication in smart power systems, and optimization challenges in smart power system operations. Each area discussed focuses on the scientific innovations relating to the approaches, methods and algorithmic solutions presented."
Anmerkung:
Front Cover -- Smart Power Distribution Systems: Control, Communication, and Optimization -- Copyright -- Contents -- List of contributors -- About the editors -- Preface -- Acknowledgments -- Organization of this book -- Part One: Modeling and control of smart power distribution network -- Part Two: ICT technologies for smart power distribution networks -- Part Three: Optimization models and methods in smart power distribution networks -- Part One: Modeling and control of smart power distribution network (control aspect) -- Chapter 1: An overview of codes and control strategies for frequency regulation in wind power generation -- 1.1. Introduction -- 1.2. Grid codes on frequency regulation -- 1.3. Frequency regulation framework -- 1.3.1. Passive frequency regulation -- 1.3.2. Active frequency regulation -- 1.4. System-level control -- 1.5. Plant/farm-level coordinated control -- 1.6. WTG-level control strategy -- 1.6.1. Inertial emulation control -- 1.6.2. Overproduction -- 1.6.3. De-loading operation -- 1.6.4. Droop control -- 1.6.5. Hybrid control schemes -- 1.6.6. Performance comparison -- 1.7. Discussion -- 1.7.1. WTG level -- 1.7.1.1. Advanced control strategies -- 1.7.1.2. WTG regulation margin assessment -- 1.7.2. Wind plant/farm level -- 1.7.2.1. WTG inner coordination -- 1.7.2.2. Frequency regulation capacity assessment -- 1.7.3. System level -- 1.7.3.1. Dynamic allocation scheduling -- 1.7.3.2. Economics of frequency service -- 1.8. Conclusion -- Acknowledgment -- References -- Chapter 2: A two-stage reserve scheduling considering wind turbine generator's de-loading control -- 2.1. Introduction -- 2.2. WTG-integrated dispatch mode and DFIG de-loading operation -- 2.2.1. WTG-integrated dispatch mode -- 2.2.2. DFIG de-loading operation -- 2.3. A bi-level optimization model for the two-stage reserve scheduling problem.
,
2.3.1. The prescheduling stage -- 2.3.2. The real-time stage -- 2.3.3. The two-stage and bi-level optimization model -- 2.3.4. The equivalent single-level model -- 2.4. Case studies -- 2.4.1. Bi-level optimization results -- 2.4.2. Comparison between MPPT and de-loading control -- 2.4.3. The real-time control effect -- 2.4.4. Results of reserve scheduling -- 2.5. Conclusion -- Appendix. The single-level model formulation -- Acknowledgment -- References -- Chapter 3: Dynamic energy management and control of a grid-interactive DC microgrid system -- 3.1. Introduction -- 3.2. System description -- 3.2.1. Modeling of the solar PV generation -- 3.2.2. Modeling of supercapacitor bank -- 3.2.3. Modeling of battery bank -- 3.2.4. Modeling of the DC-DC boost converter -- 3.2.5. Modeling of the DC-DC bidirectional converter -- 3.2.6. Modeling of the voltage source inverter -- 3.3. Dynamic energy management and control -- 3.3.1. DC-link voltage control -- 3.3.2. PMS for the HESD and utility grid -- 3.3.3. Grid synchronization and control -- 3.4. Results and discussion -- 3.4.1. Case I -- 3.4.2. Case II -- 3.4.3. Case III -- 3.5. Conclusion -- References -- Further reading -- Chapter 4: Modeling, control, and energy management for DC microgrid -- 4.1. Introduction -- 4.2. DC MG structure and modeling -- 4.2.1. PV system modeling -- 4.2.2. Fuel-cell generation system modeling -- 4.2.3. Battery bank modeling -- 4.3. DC MG experimental set-up -- 4.3.1. DC MG configuration -- 4.3.2. PV array simulator -- 4.3.3. PEMFC generation system -- 4.3.4. Battery energy-storage system -- 4.4. Optimal control and energy management for DC MG -- 4.4.1. Control objectives -- 4.4.2. The optimal control of distributed generations -- 4.4.2.1. The control of PV generation -- 4.4.2.2. The control of PEMFC generation -- 4.4.2.3. The control of battery bank.
,
4.4.3. The energy management strategy of DC MG -- 4.4.3.1. Classical PI control strategy -- 4.4.3.2. State machine control strategy -- 4.5. Results and discussions -- 4.6. Conclusions -- Acknowledgments -- References -- Chapter 5: Hybrid AC/DC distribution network voltage control -- 5.1. Introduction -- 5.1.1. Voltage control after DGs integration -- 5.1.2. Evolution of MG and its control method -- 5.1.3. Potential of voltage support from MG -- 5.2. VSC-based hybrid AC/DC MG (lower layer) -- 5.2.1. Layout of proposed MG -- 5.2.2. Control method of IC1 -- 5.2.3. Control method of IC2 -- 5.3. Proposed voltage control scheme (upper layer) -- 5.3.1. Multiobjective voltage optimization problem formulation -- 5.3.2. Proposed solution (MOEA/D and decision making) -- 5.3.2.1. MOEA/D -- 5.3.2.2. Decision-making process -- 5.4. Case study -- 5.4.1. Voltage control in the upper layer -- 5.4.1.1. Case A: Voltage control without reactive power injection from MGs -- 5.4.1.2. Case B: Voltage control with reactive power injection from MGs -- 5.4.2. Voltage control in the lower layer -- 5.5. Conclusions -- Acknowledgment -- References -- Chapter 6: Controlling the distributed energy resources under fading channel -- 6.1. Introduction -- 6.2. Microgrid state-space model -- 6.3. LQG controller under fading channel -- 6.4. Simulation results and discussions -- 6.4.1. Simulation Case 1 -- 6.4.2. Simulation Case 2 -- 6.5. Conclusions and future work -- References -- Further reading -- Chapter 7: Cooperative energy dispatch for multiple autonomous microgrids with distributed renewable sources and storages -- 7.1. Introduction -- 7.2. Autonomous microgrid optimization model -- 7.3. Cooperative operation control strategy (w/o storages) -- 7.4. Numerical experiments and result -- 7.4.1. Simulation scenarios -- 7.4.2. Case study -- 7.4.3. Numerical result.
,
7.4.3.1. Generation-demand match -- 7.4.3.2. CLs power supply guarantee -- 7.4.3.3. Power supply reliability -- 7.5. Remarks -- 7.5.1. The energy storage deployment -- 7.5.2. Network component reliability -- 7.5.3. Accurate network model and interconnection with grid -- 7.5.4. Technical feasibility in practical deployment -- 7.6. Cooperative scheduling strategies (with storages) -- 7.7. Case study with the IEEE 33-bus network scenario -- 7.7.1. Scenario I: (time slot 00:00) -- 7.7.2. Scenario II (time slot 05:00) -- 7.8. Simulation experiment and numerical result -- 7.8.1. Power supply to CLs -- 7.8.2. Generation and demand match -- 7.8.3. DG utilization efficiency -- 7.9. Remarks -- 7.10. Conclusions -- References -- Part Two: ICT technologies for smart power distribution networks -- Chapter 8: Privacy of energy consumption data of a household in a smart grid -- 8.1. Introduction -- 8.2. Smart grid and its many benefits -- 8.3. Security vulnerabilities of smart grid and its impact -- 8.4. Security objectives of smart grid -- 8.5. Privacy preserving techniques in smart grids -- 8.5.1. Data anonymization and perturbation -- 8.5.2. Data aggregation and homomorphic encryption -- 8.5.3. Data aggregation and differential privacy -- 8.5.4. Privacy-preserving using aggregation with a TTP -- 8.5.5. Rechargeable batteries for masking and obfuscation of metering data -- 8.6. Conclusions -- References -- Further reading -- Chapter 9: Microgrid communication system and its application in hierarchical control -- 9.1. Introduction -- 9.1.1. Technologies -- 9.1.1.1. Wired-line communication technology -- 9.1.1.2. Wireless communication technology -- 9.1.2. Categories -- 9.1.3. Requirements -- 9.1.3.1. Network latency -- 9.1.3.2. Reliability -- 9.1.3.3. Security -- 9.1.3.4. Time synchronization -- 9.2. Communication construction based on hierarchical control.
,
9.2.1. Communication in DGs -- 9.2.2. Communication in microgrid -- 9.2.3. Communication between microgrid and the outside -- 9.3. Consensus algorithm based on microgrid communication system -- 9.3.1. Graph theory -- 9.3.2. Consensus algorithm without communication delay -- 9.3.3. Consensus algorithm with communication delay -- 9.4. Case studies -- 9.4.1. Hierarchical distributed control -- 9.4.2. The consensus algorithm in hierarchical control -- 9.4.3. The communication system -- 9.4.4. Results and discussion -- 9.4.4.1. Case 1: Charging operation -- 9.4.4.2. Case 2: Discharging operation -- 9.5. Conclusions -- Acknowledgments -- References -- Chapter 10: ICT technologies standards and protocols for active distribution network -- 10.1. Introduction to the concept of information and communication technology (ICT) -- 10.2. Introduction to active distribution network -- 10.2.1. Smart grid architecture -- 10.2.2. Active distribution network in the background of smart grid construction -- 10.3. ICT technologies in the active distribution networks -- 10.3.1. ICT in the active distribution networks -- 10.3.1.1. Requirements for communication systems in the active distribution network -- 10.3.1.2. ICT communication technologies in the active distribution network -- 10.3.1.3. Communication protocol in the active distribution network -- IEC 60870 -- IEC 61968 -- IEC 61970 -- IEC 61850 -- 10.3.2. Active distribution network and SCADA system -- 10.3.2.1. Existing SCADA system -- 10.3.2.2. Architecture of SCADA system -- 10.3.3. Information security issues in active distribution network -- 10.3.3.1. Information security requirements in active distribution network -- 10.3.3.2. Information security precautions -- 10.3.4. Active distribution network and big data -- 10.3.4.1. Features of the big data in the active distribution network.
,
10.3.4.2. The application of big data technology in the active distribution network.
Sprache:
Englisch
Bookmarklink