UID:
edoccha_9961089701102883
Umfang:
1 online resource (344 pages)
ISBN:
0-12-813067-9
,
0-12-813066-0
Anmerkung:
Includes index.
,
Front Cover -- Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress in Plants -- Copyright -- Contents -- Contributors -- Foreword -- Preface -- Chapter 1: Transcription Factors Based Genetic Engineering for Abiotic Tolerance in Crops -- 1. Introduction -- 2. Discovery of Candidate TFs -- 3. Major Transcription Factor Families -- 3.1. AP2/ERF TF Family -- 3.2. bZIP TF Family -- 3.3. MYB TF Family -- 3.4. NAC TF Family -- 3.5. WRKY TF Family -- 4. Development of Engineered TF Crops -- 5. Limitations -- 6. Synthetic TFs -- 7. Concluding Remarks -- Acknowledgment -- References -- Chapter 2: Sugars Play a Critical Role in Abiotic Stress Tolerance in Plants -- 1. Introduction -- 2. Metabolism of Sugars Important for Abiotic Stress Tolerance: A Brief Introduction -- 3. Diverse Roles of Sugars During Abiotic Stress Tolerance -- 3.1. Scavenging Reactive Oxygen Species -- 3.2. Sugars as Osmo-Protectants -- 3.3. Sugars as Signaling Molecules -- 4. Targeting Sugars to Develop Abiotic Stress Tolerant Crop Varieties -- 4.1. Salt Stress -- 4.2. Drought Stress -- 4.3. Cold Stress -- 5. Limitations and Challenges -- 6. Conclusions -- References -- Further Reading -- Chapter 3: Polyamines Metabolism: A Way Ahead for Abiotic Stress Tolerance in Crop Plants -- 1. Introduction -- 1.1. Abiotic Stress and Polyamines-Assessment of the Relationship -- 2. Biosynthesis of Polyamines Under Abiotic Stresses -- 3. Polyamines in Response to Different Abiotic Stresses -- 3.1. Polyamines and Cold Stress -- 3.2. Polyamines and Drought -- 3.3. Polyamines and Heat Stress -- 3.4. Polyamines and Salinity Stress -- 4. Interconnection Between Polyamines Catabolism, ROS Generation, and Metabolic Routes -- 5. Concluding Remarks -- References -- Further Reading -- Chapter 4: Cold Tolerance in Plants: Molecular Machinery Deciphered -- 1. Introduction.
,
2. Effect of Chilling on the Physiological Processes of Plants -- 3. Cold Stress Signaling -- 4. The Responses of Plants to Cold Stress -- 4.1. Transcription Factors Involved in Cold Stress -- 4.2. Modification in Membrane Composition -- 4.3. Production of Compatible Solutes -- 4.4. Production of Cold Shock Proteins -- 4.5. Roles of Dehydrins in Cold Stress Tolerance -- 4.6. ROS Scavenging Systems -- 5. Conclusions -- References -- Further Reading -- Chapter 5: Impact of Soil Moisture Regimes on Wilt Disease in Tomatoes: Current Understanding -- 1. Introduction -- 2. Stress Interaction: At the Juncture of the Rhizosphere and the Roots -- 2.1. Impact of Soil Moisture on Pathogen Multiplication -- 2.2. Impact of Soil Moisture on Pathogen Infection -- 2.3. Drought and Wilt: Interactions at the Plant Interface -- 3. Physiological Changes During Stress Interaction -- 4. Conclusions and Future Perspectives -- Acknowledgment -- References -- Chapter 6: Field Performance of Transgenic Drought-Tolerant Crop Plants -- 1. Introduction -- 2. Crop Development and Response Against Drought Stress -- 3. Drought Endurance and Crop Achievements -- 4. Major Drought-Tolerant Transgenic Plants -- 4.1. Genes Related to Osmoprotectants -- 4.2. Genes Related to Ions/Mineral Nutrients -- 4.3. Genes Related to Antioxidants -- 4.4. Genes Related to Plant Hormones -- 5. Field Performance of Transgenic Plants -- 6. Major Problems Under Field Conditions -- 7. Social and Economic Benefits of Genetically Modified Plants -- 8. Conclusions and Prospects -- References -- Chapter 7: DNA Helicase-Mediated Abiotic Stress Tolerance in Plants -- 1. Introduction -- 1.1. Properties of Helicases -- 2. Genomics -- 3. Structure of the Helicase -- 4. Identification of Helicases -- 5. DNA Helicases -- 5.1. Plant DNA Helicases -- 5.1.1. Functions of Plant DNA Helicases.
,
5.1.2. Pea DNA Helicase 45 -- 5.1.3. Ku Protein -- 5.1.4. Nucleolin -- 5.1.5. XPB and XPD -- 5.1.6. Mini-Chromosome Maintenance Proteins -- 5.1.7. SUV3 -- 5.2. DNA Helicases and Abiotic Stress Tolerance -- 6. Conclusion -- References -- Further Reading -- Chapter 8: RNAi Technology: The Role in Development of Abiotic Stress-Tolerant Crops -- 1. RNAi-Based Technology: An Emerging Novel Approach -- 2. RNAi: Brief History and Basic Mechanism -- 2.1. History -- 2.2. Basic Mechanism -- 2.3. Phases of RNAi Mediated mRNA Degradation -- 3. Involvement of RNAi in Abiotic Stress Responses -- 3.1. Salinity -- 3.2. Drought -- 3.3. Temperature Variations (Cold and Heat) -- 3.4. Heavy Metals -- 4. Utilization of RNAi for Crop Improvement -- 5. Conclusion: Pros and Cons of RNAi, and the Future -- Acknowledgments -- References -- Chapter 9: Genome-Wide Association Studies (GWAS) for Abiotic Stress Tolerance in Plants -- 1. Introduction -- 2. Genome-Wide Association Study, Design, and Analysis -- 2.1. GWAS Design -- 2.2. Capturing SNPs -- 2.3. GWAS Analysis -- 2.4. Replication of GWAS -- 2.5. Metaanalysis of GWAS -- 3. Applications of GWAS for Abiotic Stress Tolerance in Plants -- 3.1. GWAS Identifies Genes Associated With Drought Tolerance -- 3.2. GWAS Identifies Genes Associated With Salt Tolerance -- 3.3. GWAS Identifies Genes Associated With Thermal Tolerance -- 4. Conclusion -- Acknowledgments -- References -- Further Reading -- Chapter 10: Targeting the Redox Regulatory Mechanisms for Abiotic Stress Tolerance in Crops -- 1. Introduction -- 2. Reactive Oxygen Species: Chemical Behavior, History, and Production Sites -- 2.1. Chemical Behavior of ROS -- 2.2. Site of ROS Production -- 2.2.1. Mitochondria -- 2.2.2. Chloroplast -- 2.2.3. Peroxisome -- 2.2.4. Apoplast -- 2.2.5. Other Cellular Sites -- 3. Overproduction of ROS Species in Stressful Environments.
,
3.1. Drought -- 3.2. Salinity -- 3.3. Cold/Chilling -- 3.4. Metal/Metalloid Toxicity -- 4. Dual Behavior of ROS -- 4.1. ROS Communication With Other Signaling Molecules -- 4.1.1. MAP Kinases and ROS -- 4.1.2. G-Proteins and ROS -- 4.1.3. NADPH Oxidases -- 4.2. ROS Role in Stress Signaling -- 4.3. Elevated ROS and Oxidative Damage to Biomolecules -- 4.3.1. Lipid Peroxidation and Protein Oxidation -- 4.3.2. Nucleic Acid -- 4.3.3. Carbohydrates -- 5. Defence System Against ROS: The Role of Antioxidants -- 5.1. Ascorbate Peroxidases -- 5.1.1. Drought and Salinity -- 5.1.2. Metals/Metalloids -- 5.2. Monodehydroascorbate Reductase and Dehydroascorbate Reductase -- 5.2.1. MDHAR -- 5.2.2. DHAR -- 5.3. Catalase -- 5.3.1. Metals/Metalloids -- 5.3.2. Drought, Salinity, and Other Abiotic Stresses -- 5.4. Glutathione Reductase -- 5.4.1. Metals/Metalloids -- 5.4.2. Drought, Salinity, and Other Abiotic Stresses -- 5.5. Superoxide Dismutase -- 5.5.1. Metals/Metalloids -- 5.5.2. Drought, Salinity, and Other Abiotic Stresses -- 5.6. GSH and AsA -- 5.6.1. Metals/Metalloids -- 5.6.2. Drought, Salinity, and Other Abiotic Stresses -- 5.7. Alternative Oxidase -- 5.7.1. Drought, Salinity, and Other Abiotic Stresses -- 5.8. Respiratory Burst Oxidase Homologs -- 5.8.1. Drought, Salinity, and Other Abiotic Stresses -- 5.9. NADP-Dependent Malate Dehydrogenase (NADP-MDH) and the Malate Valve -- 5.9.1. Drought, Salinity, and Other Abiotic Stresses -- 5.10. Plastid Terminal Oxidase -- 5.10.1. Major Abiotic Stresses -- 6. Oxidative Stress Tolerance in Plants by Developing Transgenic Lines -- 7. Conclusion and Future Perspectives -- Acknowledgments -- References -- Further Reading -- Chapter 11: Compatible Solute Engineering of Crop Plants for Improved Tolerance Toward Abiotic Stresses -- 1. Introduction -- 2. Compatible Solute-Mediated Abiotic Stress Response.
,
3. Compatible Solute Engineering: Biosynthesis and Accumulation of Osmolytes -- 3.1. Proline -- 3.2. Glycine Betaine -- 3.3. Polyamines -- 3.4. Sugars and Sugar Alcohols -- 3.4.1. Trehalose -- 3.4.2. Fructans -- 3.4.3. Mannitol -- 3.4.4. Sorbitol -- 4. Conclusion -- Acknowledgments -- References -- Further Reading -- Chapter 12: Single-Versus Multigene Transfer Approaches for Crop Abiotic Stress Tolerance -- 1. Introduction -- 2. Rise of the Transgenic Approach for Enhancing Abiotic Stress Tolerance in Plants -- 2.1. Single-Gene Transfer Approach -- 2.1.1. Transcription Factors: As Potential Candidates for the Single-Gene Transfer Approach -- 2.2. Multiple-Gene Transfer Approach -- 2.2.1. Success Stories of the Multiple-Gene Transfer Approach for Enhancing Abiotic Stress Tolerance in Plants -- 2.2.1.1. Engineering Genes Involved in Antioxidant Pathways for Enhancing Salt Tolerance -- 2.2.1.2. Gene Pyramiding of EaDREB2 With Pea DNA Helicase Gene (PDH45) Enhances Drought and Salinity Tolerance -- 2.2.1.3. Simultaneous Expression of Three Genes, Alfin1, PgHSF4, and PDH45 Improves Drought Adaptation -- 2.2.1.4. Engineering Glyoxalase Pathways for Enhancing Multiple-Stress Tolerance -- 3. Conclusions -- Acknowledgments -- References -- Further Reading -- Chapter 13: Crop Phenomics for Abiotic Stress Tolerance in Crop Plants -- 1. Introduction -- 2. Techniques to Elucidate a Plant's Phenome -- 2.1. Visible Light (300-700nm) Imaging -- 2.2. Infrared- and Thermal-Based Imaging -- 2.3. Fluorescence Imaging -- 2.4. Spectroscopy Imaging -- 2.5. Integrated Imaging Techniques -- 3. Phenotypic and Biochemical Changes in Crops Under Abiotic Stresses -- 3.1. Drought Tolerance -- 3.2. Salinity Tolerance -- 3.3. Temperature (Heat/Cold) Stress Tolerance -- 4. Application of Phenomics in Improving Abiotic Stress Tolerance in Plants -- 4.1. Infrared Thermography.
,
4.2. Spectroscopic Techniques.
Sprache:
Englisch
Bookmarklink