Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
  • 1
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Academic Press,
    UID:
    almahu_9949697517702882
    Format: 1 online resource (390 pages)
    ISBN: 9780128204481
    Series Statement: Elsevier Series on Plasticity of Materials Series
    Content: Thermomechanics of Solids and Structures: Physical Mechanisms, Continuum Mechanics, and Applications covers kinematics, balance equations, the strict thermodynamic frameworks of thermoelasticity, thermoplasticity, creep covering constitutive equations, the physical mechanisms of deformation, along with computational aspects. The book concludes with coverage of the thermodynamics of solids and applications of the constitutive three-dimensional model to both one-dimensional homogeneous and composite beam structures. Practical applications of the theories and techniques covered are emphasized throughout the book, with analytical solutions provided for various problems.
    Note: Front Cover -- Thermomechanics of Solids and Structures -- Copyright -- Contents -- About the author -- Preface -- I Introduction to continuum mechanics -- 1 Tensors -- 1.1 Elementary concepts and notation -- 1.2 Vector algebra -- 1.2.1 Vector representation -- 1.2.2 Algebraic operations on vectors -- 1.2.3 Kronecker delta and Levi-Civita symbol -- 1.3 Tensor algebra and other important properties and operations -- 1.3.1 Basic algebraic operations on tensors -- 1.3.2 Transpose of a tensor -- 1.3.3 Symmetric and skew-symmetric tensors -- 1.3.4 Inverse of a tensor -- 1.3.5 Trace of a tensor -- 1.3.6 Double contraction of tensors -- 1.3.7 Determinant of a tensor -- 1.3.8 Exponential of a second-order tensor -- 1.3.9 Logarithm of a second-order tensor -- 1.3.10 Deviatoric and spherical parts of a tensor -- 1.3.11 Higher-order tensors -- 1.3.12 Orthogonal tensors -- 1.3.13 Transformation of tensor components due to change of orthonormal basis -- 1.3.14 Eigenvalues and eigenvectors of a tensor -- 1.3.15 Definiteness of a tensor -- 1.3.16 Voigt notation -- 1.4 Tensor analysis -- 1.4.1 Differentiation of tensor-valued functions of a scalar variable -- 1.4.2 Gradients of tensor fields -- 1.4.2.1 Scalar fields -- 1.4.2.2 Vector fields -- 1.4.2.3 Second-order tensor fields -- 1.4.3 Differentiation of functions of tensors -- 1.4.4 Divergence theorem -- 2 Kinematics of deformation -- 2.1 Body, motion, configurations, and displacement -- 2.2 Velocity -- 2.3 Acceleration -- 2.4 Deformation gradient and its determinant -- 2.4.1 Changes of volume and surface -- 2.4.2 Material and spatial velocity gradients -- 2.5 Polar decomposition of the deformation gradient -- 2.6 Green-Lagrange, Euler-Almansi, and infinitesimal strain tensors -- 2.6.1 Strain tensor rates -- 2.7 Reynolds' transport theorem -- 3 Stress tensors, balance laws, and variational principles. , 3.1 Forces and stress tensors -- 3.1.1 External forces -- 3.1.2 Cauchy stress tensor -- 3.1.3 Other stress tensors -- 3.2 Balance laws -- 3.2.1 Balance of mass -- 3.2.2 Balance of linear momentum -- 3.2.3 Balance of angular momentum -- 3.2.4 Balance of energy -- 3.2.5 Second law of thermodynamics -- 3.2.6 Constitutive relations -- 3.2.6.1 Specific heat capacity -- 3.3 Fundamental variational principles in thermomechanics -- 3.3.1 Principle of virtual work -- 3.3.2 Principle of minimum total potential energy -- 3.3.3 Principle of virtual thermal work -- II Thermomechanics of solids -- 4 Thermoelasticity of solids -- 4.1 Theoretical and experimental observations -- 4.1.1 General remarks about thermoelasticity of solids and structures -- 4.1.2 Elasticity and temperature -- 4.1.3 Thermoelastic or Gough-Joule effect -- 4.1.4 Thermoelastic material properties and temperature -- 4.1.4.1 Elastic properties -- 4.1.4.2 Coefficient of thermal expansion -- 4.1.4.3 Specific heat capacity -- 4.1.4.4 Thermal conductivity -- 4.2 Constitutive modeling -- 4.2.1 Small strain thermoelasticity -- 4.2.2 Finite strain thermoelasticity -- 4.2.2.1 Multiplicative decomposition of the deformation gradient -- 4.3 Finite element procedures in thermoelasticity -- 4.3.1 Linear thermoelasticity -- 4.3.2 Finite strain thermoelasticity -- 4.3.2.1 Solution of the nonlinear problem by the Newton-Raphson method -- 4.3.2.2 Linearizations -- 4.3.2.3 Finite element discretization -- 5 Thermoplasticity of solids -- 5.1 Experimental observations -- 5.1.1 Microstructural aspects -- 5.1.2 Physical mechanisms of plastic deformation in metals -- 5.1.2.1 Perfect crystals -- 5.1.2.2 Dislocation slip -- 5.1.2.3 Twinning -- 5.1.2.4 Dislocations and strain hardening -- 5.1.2.5 Dislocations and temperature -- 5.1.3 Yield stress softening in metals. , 5.1.4 Energy stored during plastic deformation and the Taylor-Quinney coefficient -- 5.2 Constitutive modeling -- 5.2.1 Small strain thermoplasticity -- 5.2.1.1 Kinematics and balance laws -- 5.2.1.2 Internal variables -- 5.2.1.3 Yield condition -- 5.2.1.4 Principle of maximum plastic dissipation -- 5.2.1.5 Temperature evolution -- 5.2.2 Finite strain thermoplasticity -- 5.2.2.1 Kinematics -- 5.2.2.2 Constitutive models and balance laws -- 5.3 Numerical procedures in thermoplasticity -- 5.3.1 Variational constitutive updates -- 6 Creep and thermoviscoplasticity of metals -- 6.1 Physical mechanisms of creep and experimental results -- 6.1.1 Introductory remarks on creep -- 6.1.2 Creep mechanisms in metals -- 6.1.3 Dislocation creep -- 6.1.4 Diffusional creep -- 6.1.5 Creep experiments in metals -- 6.2 Constitutive modeling of creep and relaxation -- 6.2.1 One-dimensional models -- 6.2.2 Multiaxial models -- 6.3 Viscous models -- 6.3.1 Thermoviscoelasticity -- 6.3.2 Thermoviscoplasticity - motivation. One-dimensional Perzyna model -- 6.3.3 Multiaxial models of small strain thermoviscoplasticity -- 6.3.4 Multiaxial models of finite strain thermoviscoplasticity -- III Thermomechanics of structures -- 7 Thermomechanics of one-dimensional structures -- 7.1 Thermoelasticity of bars -- 7.1.1 Basic assumptions -- 7.1.2 Constitutive behavior of thermoelastic bars -- 7.1.3 Coupled thermoelasticity in bars -- 7.1.4 Uncoupled thermoelasticity in bars -- 7.2 Thermoelasticity of beams -- 7.2.1 Basic assumptions -- 7.2.2 Symmetric bending of homogeneous beams -- 7.2.2.1 Variational formulation - principle of minimum potential energy for symmetric bending -- 7.2.3 Nonsymmetric bending of homogeneous beams -- 7.2.4 Bending of thermoelastic composite beams -- 7.2.4.1 Functionally graded beams in the longitudinal direction. , 7.2.4.2 Functionally graded beams in the transverse direction -- 7.2.4.3 Multilayered composite beams -- 7.3 Inelasticity of beams -- 7.3.1 Thermoplasticity of beams -- 7.3.2 Creep in beams -- 8 Nonlocal thermoelasticity of beams -- 8.1 Preliminaries, Eringen's nonlocal theory, and paradoxes -- 8.2 Nonlocal bending of homogeneous beams -- 8.2.1 Basic assumptions -- 8.2.2 Nonlocal beams -- 8.3 Nonlocal bending of composite beams -- 8.3.1 The shift of the neutral surface -- 8.3.2 Nonlocal problems and Laplace transforms -- Bibliography -- Index -- Back Cover.
    Additional Edition: Print version: Canadija, Marko Thermomechanics of Solids and Structures San Diego : Elsevier,c2023 ISBN 9780128201213
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Academic Press,
    UID:
    edocfu_9961090191602883
    Format: 1 online resource (390 pages)
    ISBN: 9780128204481
    Series Statement: Elsevier Series on Plasticity of Materials Series
    Content: Thermomechanics of Solids and Structures: Physical Mechanisms, Continuum Mechanics, and Applications covers kinematics, balance equations, the strict thermodynamic frameworks of thermoelasticity, thermoplasticity, creep covering constitutive equations, the physical mechanisms of deformation, along with computational aspects. The book concludes with coverage of the thermodynamics of solids and applications of the constitutive three-dimensional model to both one-dimensional homogeneous and composite beam structures. Practical applications of the theories and techniques covered are emphasized throughout the book, with analytical solutions provided for various problems.
    Note: Front Cover -- Thermomechanics of Solids and Structures -- Copyright -- Contents -- About the author -- Preface -- I Introduction to continuum mechanics -- 1 Tensors -- 1.1 Elementary concepts and notation -- 1.2 Vector algebra -- 1.2.1 Vector representation -- 1.2.2 Algebraic operations on vectors -- 1.2.3 Kronecker delta and Levi-Civita symbol -- 1.3 Tensor algebra and other important properties and operations -- 1.3.1 Basic algebraic operations on tensors -- 1.3.2 Transpose of a tensor -- 1.3.3 Symmetric and skew-symmetric tensors -- 1.3.4 Inverse of a tensor -- 1.3.5 Trace of a tensor -- 1.3.6 Double contraction of tensors -- 1.3.7 Determinant of a tensor -- 1.3.8 Exponential of a second-order tensor -- 1.3.9 Logarithm of a second-order tensor -- 1.3.10 Deviatoric and spherical parts of a tensor -- 1.3.11 Higher-order tensors -- 1.3.12 Orthogonal tensors -- 1.3.13 Transformation of tensor components due to change of orthonormal basis -- 1.3.14 Eigenvalues and eigenvectors of a tensor -- 1.3.15 Definiteness of a tensor -- 1.3.16 Voigt notation -- 1.4 Tensor analysis -- 1.4.1 Differentiation of tensor-valued functions of a scalar variable -- 1.4.2 Gradients of tensor fields -- 1.4.2.1 Scalar fields -- 1.4.2.2 Vector fields -- 1.4.2.3 Second-order tensor fields -- 1.4.3 Differentiation of functions of tensors -- 1.4.4 Divergence theorem -- 2 Kinematics of deformation -- 2.1 Body, motion, configurations, and displacement -- 2.2 Velocity -- 2.3 Acceleration -- 2.4 Deformation gradient and its determinant -- 2.4.1 Changes of volume and surface -- 2.4.2 Material and spatial velocity gradients -- 2.5 Polar decomposition of the deformation gradient -- 2.6 Green-Lagrange, Euler-Almansi, and infinitesimal strain tensors -- 2.6.1 Strain tensor rates -- 2.7 Reynolds' transport theorem -- 3 Stress tensors, balance laws, and variational principles. , 3.1 Forces and stress tensors -- 3.1.1 External forces -- 3.1.2 Cauchy stress tensor -- 3.1.3 Other stress tensors -- 3.2 Balance laws -- 3.2.1 Balance of mass -- 3.2.2 Balance of linear momentum -- 3.2.3 Balance of angular momentum -- 3.2.4 Balance of energy -- 3.2.5 Second law of thermodynamics -- 3.2.6 Constitutive relations -- 3.2.6.1 Specific heat capacity -- 3.3 Fundamental variational principles in thermomechanics -- 3.3.1 Principle of virtual work -- 3.3.2 Principle of minimum total potential energy -- 3.3.3 Principle of virtual thermal work -- II Thermomechanics of solids -- 4 Thermoelasticity of solids -- 4.1 Theoretical and experimental observations -- 4.1.1 General remarks about thermoelasticity of solids and structures -- 4.1.2 Elasticity and temperature -- 4.1.3 Thermoelastic or Gough-Joule effect -- 4.1.4 Thermoelastic material properties and temperature -- 4.1.4.1 Elastic properties -- 4.1.4.2 Coefficient of thermal expansion -- 4.1.4.3 Specific heat capacity -- 4.1.4.4 Thermal conductivity -- 4.2 Constitutive modeling -- 4.2.1 Small strain thermoelasticity -- 4.2.2 Finite strain thermoelasticity -- 4.2.2.1 Multiplicative decomposition of the deformation gradient -- 4.3 Finite element procedures in thermoelasticity -- 4.3.1 Linear thermoelasticity -- 4.3.2 Finite strain thermoelasticity -- 4.3.2.1 Solution of the nonlinear problem by the Newton-Raphson method -- 4.3.2.2 Linearizations -- 4.3.2.3 Finite element discretization -- 5 Thermoplasticity of solids -- 5.1 Experimental observations -- 5.1.1 Microstructural aspects -- 5.1.2 Physical mechanisms of plastic deformation in metals -- 5.1.2.1 Perfect crystals -- 5.1.2.2 Dislocation slip -- 5.1.2.3 Twinning -- 5.1.2.4 Dislocations and strain hardening -- 5.1.2.5 Dislocations and temperature -- 5.1.3 Yield stress softening in metals. , 5.1.4 Energy stored during plastic deformation and the Taylor-Quinney coefficient -- 5.2 Constitutive modeling -- 5.2.1 Small strain thermoplasticity -- 5.2.1.1 Kinematics and balance laws -- 5.2.1.2 Internal variables -- 5.2.1.3 Yield condition -- 5.2.1.4 Principle of maximum plastic dissipation -- 5.2.1.5 Temperature evolution -- 5.2.2 Finite strain thermoplasticity -- 5.2.2.1 Kinematics -- 5.2.2.2 Constitutive models and balance laws -- 5.3 Numerical procedures in thermoplasticity -- 5.3.1 Variational constitutive updates -- 6 Creep and thermoviscoplasticity of metals -- 6.1 Physical mechanisms of creep and experimental results -- 6.1.1 Introductory remarks on creep -- 6.1.2 Creep mechanisms in metals -- 6.1.3 Dislocation creep -- 6.1.4 Diffusional creep -- 6.1.5 Creep experiments in metals -- 6.2 Constitutive modeling of creep and relaxation -- 6.2.1 One-dimensional models -- 6.2.2 Multiaxial models -- 6.3 Viscous models -- 6.3.1 Thermoviscoelasticity -- 6.3.2 Thermoviscoplasticity - motivation. One-dimensional Perzyna model -- 6.3.3 Multiaxial models of small strain thermoviscoplasticity -- 6.3.4 Multiaxial models of finite strain thermoviscoplasticity -- III Thermomechanics of structures -- 7 Thermomechanics of one-dimensional structures -- 7.1 Thermoelasticity of bars -- 7.1.1 Basic assumptions -- 7.1.2 Constitutive behavior of thermoelastic bars -- 7.1.3 Coupled thermoelasticity in bars -- 7.1.4 Uncoupled thermoelasticity in bars -- 7.2 Thermoelasticity of beams -- 7.2.1 Basic assumptions -- 7.2.2 Symmetric bending of homogeneous beams -- 7.2.2.1 Variational formulation - principle of minimum potential energy for symmetric bending -- 7.2.3 Nonsymmetric bending of homogeneous beams -- 7.2.4 Bending of thermoelastic composite beams -- 7.2.4.1 Functionally graded beams in the longitudinal direction. , 7.2.4.2 Functionally graded beams in the transverse direction -- 7.2.4.3 Multilayered composite beams -- 7.3 Inelasticity of beams -- 7.3.1 Thermoplasticity of beams -- 7.3.2 Creep in beams -- 8 Nonlocal thermoelasticity of beams -- 8.1 Preliminaries, Eringen's nonlocal theory, and paradoxes -- 8.2 Nonlocal bending of homogeneous beams -- 8.2.1 Basic assumptions -- 8.2.2 Nonlocal beams -- 8.3 Nonlocal bending of composite beams -- 8.3.1 The shift of the neutral surface -- 8.3.2 Nonlocal problems and Laplace transforms -- Bibliography -- Index -- Back Cover.
    Additional Edition: Print version: Canadija, Marko Thermomechanics of Solids and Structures San Diego : Elsevier,c2023 ISBN 9780128201213
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Academic Press,
    UID:
    edoccha_9961090191602883
    Format: 1 online resource (390 pages)
    ISBN: 9780128204481
    Series Statement: Elsevier Series on Plasticity of Materials Series
    Content: Thermomechanics of Solids and Structures: Physical Mechanisms, Continuum Mechanics, and Applications covers kinematics, balance equations, the strict thermodynamic frameworks of thermoelasticity, thermoplasticity, creep covering constitutive equations, the physical mechanisms of deformation, along with computational aspects. The book concludes with coverage of the thermodynamics of solids and applications of the constitutive three-dimensional model to both one-dimensional homogeneous and composite beam structures. Practical applications of the theories and techniques covered are emphasized throughout the book, with analytical solutions provided for various problems.
    Note: Front Cover -- Thermomechanics of Solids and Structures -- Copyright -- Contents -- About the author -- Preface -- I Introduction to continuum mechanics -- 1 Tensors -- 1.1 Elementary concepts and notation -- 1.2 Vector algebra -- 1.2.1 Vector representation -- 1.2.2 Algebraic operations on vectors -- 1.2.3 Kronecker delta and Levi-Civita symbol -- 1.3 Tensor algebra and other important properties and operations -- 1.3.1 Basic algebraic operations on tensors -- 1.3.2 Transpose of a tensor -- 1.3.3 Symmetric and skew-symmetric tensors -- 1.3.4 Inverse of a tensor -- 1.3.5 Trace of a tensor -- 1.3.6 Double contraction of tensors -- 1.3.7 Determinant of a tensor -- 1.3.8 Exponential of a second-order tensor -- 1.3.9 Logarithm of a second-order tensor -- 1.3.10 Deviatoric and spherical parts of a tensor -- 1.3.11 Higher-order tensors -- 1.3.12 Orthogonal tensors -- 1.3.13 Transformation of tensor components due to change of orthonormal basis -- 1.3.14 Eigenvalues and eigenvectors of a tensor -- 1.3.15 Definiteness of a tensor -- 1.3.16 Voigt notation -- 1.4 Tensor analysis -- 1.4.1 Differentiation of tensor-valued functions of a scalar variable -- 1.4.2 Gradients of tensor fields -- 1.4.2.1 Scalar fields -- 1.4.2.2 Vector fields -- 1.4.2.3 Second-order tensor fields -- 1.4.3 Differentiation of functions of tensors -- 1.4.4 Divergence theorem -- 2 Kinematics of deformation -- 2.1 Body, motion, configurations, and displacement -- 2.2 Velocity -- 2.3 Acceleration -- 2.4 Deformation gradient and its determinant -- 2.4.1 Changes of volume and surface -- 2.4.2 Material and spatial velocity gradients -- 2.5 Polar decomposition of the deformation gradient -- 2.6 Green-Lagrange, Euler-Almansi, and infinitesimal strain tensors -- 2.6.1 Strain tensor rates -- 2.7 Reynolds' transport theorem -- 3 Stress tensors, balance laws, and variational principles. , 3.1 Forces and stress tensors -- 3.1.1 External forces -- 3.1.2 Cauchy stress tensor -- 3.1.3 Other stress tensors -- 3.2 Balance laws -- 3.2.1 Balance of mass -- 3.2.2 Balance of linear momentum -- 3.2.3 Balance of angular momentum -- 3.2.4 Balance of energy -- 3.2.5 Second law of thermodynamics -- 3.2.6 Constitutive relations -- 3.2.6.1 Specific heat capacity -- 3.3 Fundamental variational principles in thermomechanics -- 3.3.1 Principle of virtual work -- 3.3.2 Principle of minimum total potential energy -- 3.3.3 Principle of virtual thermal work -- II Thermomechanics of solids -- 4 Thermoelasticity of solids -- 4.1 Theoretical and experimental observations -- 4.1.1 General remarks about thermoelasticity of solids and structures -- 4.1.2 Elasticity and temperature -- 4.1.3 Thermoelastic or Gough-Joule effect -- 4.1.4 Thermoelastic material properties and temperature -- 4.1.4.1 Elastic properties -- 4.1.4.2 Coefficient of thermal expansion -- 4.1.4.3 Specific heat capacity -- 4.1.4.4 Thermal conductivity -- 4.2 Constitutive modeling -- 4.2.1 Small strain thermoelasticity -- 4.2.2 Finite strain thermoelasticity -- 4.2.2.1 Multiplicative decomposition of the deformation gradient -- 4.3 Finite element procedures in thermoelasticity -- 4.3.1 Linear thermoelasticity -- 4.3.2 Finite strain thermoelasticity -- 4.3.2.1 Solution of the nonlinear problem by the Newton-Raphson method -- 4.3.2.2 Linearizations -- 4.3.2.3 Finite element discretization -- 5 Thermoplasticity of solids -- 5.1 Experimental observations -- 5.1.1 Microstructural aspects -- 5.1.2 Physical mechanisms of plastic deformation in metals -- 5.1.2.1 Perfect crystals -- 5.1.2.2 Dislocation slip -- 5.1.2.3 Twinning -- 5.1.2.4 Dislocations and strain hardening -- 5.1.2.5 Dislocations and temperature -- 5.1.3 Yield stress softening in metals. , 5.1.4 Energy stored during plastic deformation and the Taylor-Quinney coefficient -- 5.2 Constitutive modeling -- 5.2.1 Small strain thermoplasticity -- 5.2.1.1 Kinematics and balance laws -- 5.2.1.2 Internal variables -- 5.2.1.3 Yield condition -- 5.2.1.4 Principle of maximum plastic dissipation -- 5.2.1.5 Temperature evolution -- 5.2.2 Finite strain thermoplasticity -- 5.2.2.1 Kinematics -- 5.2.2.2 Constitutive models and balance laws -- 5.3 Numerical procedures in thermoplasticity -- 5.3.1 Variational constitutive updates -- 6 Creep and thermoviscoplasticity of metals -- 6.1 Physical mechanisms of creep and experimental results -- 6.1.1 Introductory remarks on creep -- 6.1.2 Creep mechanisms in metals -- 6.1.3 Dislocation creep -- 6.1.4 Diffusional creep -- 6.1.5 Creep experiments in metals -- 6.2 Constitutive modeling of creep and relaxation -- 6.2.1 One-dimensional models -- 6.2.2 Multiaxial models -- 6.3 Viscous models -- 6.3.1 Thermoviscoelasticity -- 6.3.2 Thermoviscoplasticity - motivation. One-dimensional Perzyna model -- 6.3.3 Multiaxial models of small strain thermoviscoplasticity -- 6.3.4 Multiaxial models of finite strain thermoviscoplasticity -- III Thermomechanics of structures -- 7 Thermomechanics of one-dimensional structures -- 7.1 Thermoelasticity of bars -- 7.1.1 Basic assumptions -- 7.1.2 Constitutive behavior of thermoelastic bars -- 7.1.3 Coupled thermoelasticity in bars -- 7.1.4 Uncoupled thermoelasticity in bars -- 7.2 Thermoelasticity of beams -- 7.2.1 Basic assumptions -- 7.2.2 Symmetric bending of homogeneous beams -- 7.2.2.1 Variational formulation - principle of minimum potential energy for symmetric bending -- 7.2.3 Nonsymmetric bending of homogeneous beams -- 7.2.4 Bending of thermoelastic composite beams -- 7.2.4.1 Functionally graded beams in the longitudinal direction. , 7.2.4.2 Functionally graded beams in the transverse direction -- 7.2.4.3 Multilayered composite beams -- 7.3 Inelasticity of beams -- 7.3.1 Thermoplasticity of beams -- 7.3.2 Creep in beams -- 8 Nonlocal thermoelasticity of beams -- 8.1 Preliminaries, Eringen's nonlocal theory, and paradoxes -- 8.2 Nonlocal bending of homogeneous beams -- 8.2.1 Basic assumptions -- 8.2.2 Nonlocal beams -- 8.3 Nonlocal bending of composite beams -- 8.3.1 The shift of the neutral surface -- 8.3.2 Nonlocal problems and Laplace transforms -- Bibliography -- Index -- Back Cover.
    Additional Edition: Print version: Canadija, Marko Thermomechanics of Solids and Structures San Diego : Elsevier,c2023 ISBN 9780128201213
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9780124201231?
Did you mean 9780128201244?
Did you mean 9780128201312?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages