Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
  • 1
    Online Resource
    Online Resource
    Duxford, England :Woodhead Publishing,
    UID:
    edocfu_9960099790902883
    Format: 1 online resource (842 pages) : , illustrations (black and white, and colour)
    Edition: Second edition.
    ISBN: 0-12-820227-0
    Series Statement: Woodhead Publishing series in metals and surface engineering
    Content: Iron Ore: Mineralogy, Processing and Environmental Sustainability, Second Edition covers all aspects surrounding the second most important commodity behind oil. As an essential input for the production of crude steel, iron ore feeds the world's largest trillion-dollar-a-year metal market and is the backbone of the global infrastructure. The book explores new ore types and the development of more efficient processes/technologies to minimize environmental footprints. This new edition includes all new case studies and technologies, along with new chapters on the chemical analysis of iron ore, thermal and dry beneficiation of iron ore, and discussions of alternative iron making technologies. In addition, information on recycling solid wastes and P-bearing slag generated in steel mills, sustainable mining, and low emission iron making technologies from regional perspectives, particularly Europe and Japan, are included. This work will be a valuable resource for anyone involved in the iron ore industry.
    Note: Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- Preface -- Preface to the second edition -- Biography -- 1 - Introduction: Overview of the global iron ore industry -- 1.1 Introduction -- 1.1.1 World steel and iron ore production -- 1.1.2 World iron ore trade -- 1.1.3 World iron ore reserves and resources -- 1.2 Iron ore mining operations by country -- 1.2.1 Australia -- 1.2.2 Brazil -- 1.2.3 China -- 1.2.4 India -- 1.2.5 Russia -- 1.2.6 South Africa -- 1.2.7 Ukraine -- 1.2.8 Canada -- 1.2.9 USA -- 1.2.10 Sweden -- 1.3 Innovative technologies adopted by iron ore producers -- 1.3.1 Autonomous mining vehicles -- 1.3.2 Robotic technology -- 1.3.3 Remote operating centers -- 1.3.4 Sensing technology/real-time data acquisition -- 1.3.5 Digital technology -- 1.3.5.1 Spatial data visualization -- 1.3.5.2 Geographic information systems -- 1.3.5.3 Artificial intelligence and machine learning -- 1.4 Challenges facing iron ore industry -- 1.4.1 Depleting high-grade iron ore reserves -- 1.4.2 GHG emissions and climate change -- 1.4.3 Health and safety -- 1.4.4 Volatility of commodity prices -- 1.4.5 Access to capital -- References -- Part One - Characterization and analysis of iron ore -- 2 - Mineralogical, chemical, and physical metallurgical characteristics of iron ore -- 2.1 Introduction -- 2.2 Mineralogy -- 2.2.1 Common iron ore and gangue minerals -- 2.2.2 Iron ore deposits -- 2.2.2.1 Deposit types -- 2.2.2.2 Iron formation-hosted iron ore deposits -- 2.2.2.3 Iron formation and replacement ore mineralogy -- 2.2.2.4 Unenriched iron formation ores -- 2.2.2.5 Martite-goethite supergene ores -- 2.2.2.6 Residual hematite ores -- 2.2.2.7 Microplaty hematite ore -- 2.2.2.8 Phanerozoic ooidal ironstones including channel iron deposits -- 2.2.2.9 Iron sands. , 2.2.2.10 Sulfur-rich sources of iron -- 2.2.2.11 Iron ore classification -- 2.3 Chemical composition -- 2.4 Physical properties -- 2.4.1 Relative hardness and lump/fine ore ratio -- 2.4.2 Lump material-handling properties -- 2.4.3 ROM properties for crushing -- 2.4.3.1 Uniaxial compressive strength -- 2.4.3.2 Impact crushability -- 2.4.4 Particle specific gravity -- 2.4.5 Material-handling properties -- 2.4.5.1 Abrasion properties -- 2.4.5.2 Frictional properties -- 2.4.5.3 Bulk density -- 2.4.6 Product particle size -- 2.4.7 Relationship between ore properties and process performance -- 2.4.7.1 Prediction of blast furnace lump quality -- 2.4.7.2 Lump DI and ore groups -- 2.5 Future trends -- References -- 3 - Quantitative XRD analysis and evaluation of iron ore, sinter, and pellets -- 3.1 Introduction -- 3.2 XRD mineral quantification -- 3.2.1 X-ray diffractometer -- 3.2.2 Principles of powder X-ray diffraction -- 3.2.3 Rietveld analysis of X-ray diffraction patterns -- 3.2.4 Sources of error in quantitative XRD analysis -- 3.2.5 Applicability of quantitative XRD analysis -- 3.3 Principal minerals of natural and sintered iron ores -- 3.4 Quantitative XRD analysis of iron ore -- 3.4.1 Quantification of iron ore minerals -- 3.4.2 Substitution assessment of impurity elements in hematite and goethite -- 3.5 Quantitative XRD analysis of iron ore sinter and pellets -- 3.5.1 Fundamental studies of sinter phases -- 3.5.2 In situ studies of sintering reactions -- 3.6 Summary -- References -- 4 - Automated optical image analysis of natural and ­sintered iron ore -- 4.1 Introduction-overview of optical image analysis technique -- 4.2 Mineralogical characteristics of iron ore and sinter -- 4.2.1 Iron ores -- 4.2.2 Sinter -- 4.3 Automated optical image analysis. , 4.3.1 Automated identification of particles and opaque minerals -- 4.3.2 Automated particle separation -- 4.3.3 Automated porosity identification -- 4.3.4 Automated identification of unidentified areas -- 4.3.5 Automated correction of mineral maps -- 4.3.6 Automated image processing -- 4.4 Application of automated OIA to natural and sintered iron ore -- References -- 5 - Quantitative analysis of iron ore using SEM-based technologies -- 5.1 Introduction -- 5.2 Principles of SEM-based technologies -- 5.2.1 Introduction to the principle of scanning electron microscopy -- 5.2.1.1 The average atomic number of a mineral or substance -- 5.2.1.2 Characteristic X-ray spectra of minerals -- 5.2.2 Sample preparation principles -- 5.2.3 Various SEM-based technologies -- 5.2.3.1 Electron back-scatter diffraction -- 5.2.3.2 Electron probe microanalysis -- 5.2.3.3 Automated mineralogical (auto-SEM) technologies -- 5.2.3.4 Auto-SEMs with specific regard to iron ore analysis -- 5.2.3.5 QEMSCAN -- 5.2.3.6 MLA -- 5.2.3.7 Mineralogic -- 5.2.3.8 TIMA -- 5.2.3.9 AMICS and INCAMineral -- 5.3 Application of automated SEM-based technologies to ore characterization -- 5.3.1 Textural analysis -- 5.3.2 Mineral abundance -- 5.3.3 Magnetite/hematite distinction -- 5.3.4 Lithotyping/microlithotyping -- 5.3.5 Grain size -- 5.3.6 Liberation, locking, and association -- 5.4 Characterization of natural and sintered iron ore using QEMSCAN -- 5.5 Summary -- 5.5.1 Advantages (strengths) -- 5.5.2 Disadvantages (weaknesses) -- 5.6 Future trends -- References -- 6 - Characterization of iron ore by visible and infrared reflectance and Raman spectroscopies -- 6.1 Introduction -- 6.2 Principles, instrumentations, and applications of reflectance spectroscopy -- 6.2.1 Reflectance spectroscopy -- 6.2.2 Reflectance spectroscopy instrumentations. , 6.2.2.1 Field spectroradiometer -- 6.2.2.2 Hyperspectral drill core and chips scanning system -- 6.2.2.3 Face mapping system -- 6.2.2.4 Remote sensing technology -- 6.2.3 Reflectance spectroscopy of iron ore minerals -- 6.2.3.1 Magnetite and maghemite -- 6.2.3.2 Goethite and hematite -- 6.2.3.3 Gangue minerals -- 6.2.3.3.1 Quartz -- 6.2.3.3.2 Clay minerals -- 6.2.3.3.3 Chlorite -- 6.2.3.3.4 Talc -- 6.2.3.3.5 Amphiboles -- 6.2.3.3.6 Carbonates -- 6.2.4 Application of reflectance spectroscopy to iron ore characterization -- 6.3 Principles, instrumentations, and applications of Raman spectroscopy -- 6.3.1 Raman spectroscopy -- 6.3.2 Raman spectroscopy instrumentations -- 6.3.2.1 Portable Raman spectroscope -- 6.3.2.2 Raman microscope -- 6.3.3 Raman spectroscopy of iron ore minerals -- 6.4 Future trends -- References -- Part Two - Extraction, comminution, classification, and beneficiation of iron ore -- 7 - Iron ore extraction techniques -- 7.1 Introduction -- 7.2 Iron ore mining-an historical UK context -- 7.2.1 Underground mining techniques in the Cleveland ironstone mines -- 7.2.2 Underground mining techniques in the North Lincolnshire mines -- 7.3 Underground iron ore mining: Kiruna, Sweden -- 7.3.1 Introduction: the worldwide iron ore market -- 7.3.2 Location and geology -- 7.3.3 Mining method: sublevel caving -- 7.3.4 The 1365 m level -- 7.4 Modern-day surface mining: the Pilbara deposit -- 7.5 Modern day surface mining: iron ore in Minas Gerais Province, Brazil -- 7.6 Conclusions -- References -- 8 - Comminution and classification technologies of iron ore -- 8.1 Introduction -- 8.2 Iron ore crushing and screening -- 8.2.1 Crushers -- 8.2.1.1 Jaw crushers -- 8.2.1.2 Gyratory and cone crushers -- 8.2.2 Screens -- 8.2.3 Typical crushing and screening flowsheets. , 8.2.3.1 Rio Tinto iron ore processing plants -- 8.2.3.2 BHP Newman iron ore handling hub -- 8.2.3.3 Roy Hill operation -- 8.2.3.4 Vale S11D project -- 8.2.3.5 Mobile crushing and screening plant applications for small to medium sized iron ore projects -- 8.3 Iron ore grinding and classification -- 8.3.1 Examples of iron ore grinding and classification flowsheets -- 8.3.2 Grinding equipment -- 8.3.2.1 Tumbling mills -- 8.3.2.1.1 Autogenous and semiautogenous mills -- 8.3.2.1.2 Ball mills -- 8.3.3 Classification equipment -- 8.3.3.1 Hydrocyclone separators -- 8.3.3.2 Air classifiers -- 8.4 Future trends in iron ore comminution and classification -- 8.4.1 Fine grinding technologies-stirred milling -- 8.4.1.1 Tower mill, Vertimill, and Velix vertical helix stirred mill -- 8.4.1.2 IsaMill -- 8.4.1.3 Outotec HIGmill -- 8.4.1 Fine screening technologies -- 8.4.2 High pressure grinding rolls -- 8.4.3 CAPEX and OPEX considerations -- References -- 9 - Physical separation of iron ore: magnetic separation -- 9.1 Introduction -- 9.2 Principle of magnetic separation -- 9.2.1 Magnetic force on particles -- 9.2.2 Magnetic susceptibilities of minerals in iron ore -- 9.2.2.1 Iron minerals -- 9.2.2.2 Gangue minerals in iron ores -- 9.3 Magnetic separators -- 9.3.1 Low-intensity magnetic separators -- 9.3.2 High intensity and high gradient magnetic separators -- 9.4 Typical flow sheets for upgrading low-grade iron ores -- 9.4.1 Major principles for selection of separation methods -- 9.4.2 Typical flow sheets for upgrading magnetite ores -- 9.4.3 Typical flow sheets for upgrading oxidized iron ores -- 9.5 Challenges and recent advances in upgrading low-grade iron ores using magnetic separation -- 9.5.1 Development of large magnetic separator units -- 9.5.2 Utilization of subeconomic iron ores and wastes. , 9.5.3 Development of dry magnetic separators.
    Additional Edition: Print version: Lu, Liming Iron Ore San Diego : Elsevier Science & Technology,c2021 ISBN 9780128202265
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Duxford, England :Woodhead Publishing,
    UID:
    almahu_9949244531102882
    Format: 1 online resource (842 pages) : , illustrations (black and white, and colour)
    Edition: Second edition.
    ISBN: 0-12-820227-0
    Series Statement: Woodhead Publishing series in metals and surface engineering
    Content: Iron Ore: Mineralogy, Processing and Environmental Sustainability, Second Edition covers all aspects surrounding the second most important commodity behind oil. As an essential input for the production of crude steel, iron ore feeds the world's largest trillion-dollar-a-year metal market and is the backbone of the global infrastructure. The book explores new ore types and the development of more efficient processes/technologies to minimize environmental footprints. This new edition includes all new case studies and technologies, along with new chapters on the chemical analysis of iron ore, thermal and dry beneficiation of iron ore, and discussions of alternative iron making technologies. In addition, information on recycling solid wastes and P-bearing slag generated in steel mills, sustainable mining, and low emission iron making technologies from regional perspectives, particularly Europe and Japan, are included. This work will be a valuable resource for anyone involved in the iron ore industry.
    Note: Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- Preface -- Preface to the second edition -- Biography -- 1 - Introduction: Overview of the global iron ore industry -- 1.1 Introduction -- 1.1.1 World steel and iron ore production -- 1.1.2 World iron ore trade -- 1.1.3 World iron ore reserves and resources -- 1.2 Iron ore mining operations by country -- 1.2.1 Australia -- 1.2.2 Brazil -- 1.2.3 China -- 1.2.4 India -- 1.2.5 Russia -- 1.2.6 South Africa -- 1.2.7 Ukraine -- 1.2.8 Canada -- 1.2.9 USA -- 1.2.10 Sweden -- 1.3 Innovative technologies adopted by iron ore producers -- 1.3.1 Autonomous mining vehicles -- 1.3.2 Robotic technology -- 1.3.3 Remote operating centers -- 1.3.4 Sensing technology/real-time data acquisition -- 1.3.5 Digital technology -- 1.3.5.1 Spatial data visualization -- 1.3.5.2 Geographic information systems -- 1.3.5.3 Artificial intelligence and machine learning -- 1.4 Challenges facing iron ore industry -- 1.4.1 Depleting high-grade iron ore reserves -- 1.4.2 GHG emissions and climate change -- 1.4.3 Health and safety -- 1.4.4 Volatility of commodity prices -- 1.4.5 Access to capital -- References -- Part One - Characterization and analysis of iron ore -- 2 - Mineralogical, chemical, and physical metallurgical characteristics of iron ore -- 2.1 Introduction -- 2.2 Mineralogy -- 2.2.1 Common iron ore and gangue minerals -- 2.2.2 Iron ore deposits -- 2.2.2.1 Deposit types -- 2.2.2.2 Iron formation-hosted iron ore deposits -- 2.2.2.3 Iron formation and replacement ore mineralogy -- 2.2.2.4 Unenriched iron formation ores -- 2.2.2.5 Martite-goethite supergene ores -- 2.2.2.6 Residual hematite ores -- 2.2.2.7 Microplaty hematite ore -- 2.2.2.8 Phanerozoic ooidal ironstones including channel iron deposits -- 2.2.2.9 Iron sands. , 2.2.2.10 Sulfur-rich sources of iron -- 2.2.2.11 Iron ore classification -- 2.3 Chemical composition -- 2.4 Physical properties -- 2.4.1 Relative hardness and lump/fine ore ratio -- 2.4.2 Lump material-handling properties -- 2.4.3 ROM properties for crushing -- 2.4.3.1 Uniaxial compressive strength -- 2.4.3.2 Impact crushability -- 2.4.4 Particle specific gravity -- 2.4.5 Material-handling properties -- 2.4.5.1 Abrasion properties -- 2.4.5.2 Frictional properties -- 2.4.5.3 Bulk density -- 2.4.6 Product particle size -- 2.4.7 Relationship between ore properties and process performance -- 2.4.7.1 Prediction of blast furnace lump quality -- 2.4.7.2 Lump DI and ore groups -- 2.5 Future trends -- References -- 3 - Quantitative XRD analysis and evaluation of iron ore, sinter, and pellets -- 3.1 Introduction -- 3.2 XRD mineral quantification -- 3.2.1 X-ray diffractometer -- 3.2.2 Principles of powder X-ray diffraction -- 3.2.3 Rietveld analysis of X-ray diffraction patterns -- 3.2.4 Sources of error in quantitative XRD analysis -- 3.2.5 Applicability of quantitative XRD analysis -- 3.3 Principal minerals of natural and sintered iron ores -- 3.4 Quantitative XRD analysis of iron ore -- 3.4.1 Quantification of iron ore minerals -- 3.4.2 Substitution assessment of impurity elements in hematite and goethite -- 3.5 Quantitative XRD analysis of iron ore sinter and pellets -- 3.5.1 Fundamental studies of sinter phases -- 3.5.2 In situ studies of sintering reactions -- 3.6 Summary -- References -- 4 - Automated optical image analysis of natural and ­sintered iron ore -- 4.1 Introduction-overview of optical image analysis technique -- 4.2 Mineralogical characteristics of iron ore and sinter -- 4.2.1 Iron ores -- 4.2.2 Sinter -- 4.3 Automated optical image analysis. , 4.3.1 Automated identification of particles and opaque minerals -- 4.3.2 Automated particle separation -- 4.3.3 Automated porosity identification -- 4.3.4 Automated identification of unidentified areas -- 4.3.5 Automated correction of mineral maps -- 4.3.6 Automated image processing -- 4.4 Application of automated OIA to natural and sintered iron ore -- References -- 5 - Quantitative analysis of iron ore using SEM-based technologies -- 5.1 Introduction -- 5.2 Principles of SEM-based technologies -- 5.2.1 Introduction to the principle of scanning electron microscopy -- 5.2.1.1 The average atomic number of a mineral or substance -- 5.2.1.2 Characteristic X-ray spectra of minerals -- 5.2.2 Sample preparation principles -- 5.2.3 Various SEM-based technologies -- 5.2.3.1 Electron back-scatter diffraction -- 5.2.3.2 Electron probe microanalysis -- 5.2.3.3 Automated mineralogical (auto-SEM) technologies -- 5.2.3.4 Auto-SEMs with specific regard to iron ore analysis -- 5.2.3.5 QEMSCAN -- 5.2.3.6 MLA -- 5.2.3.7 Mineralogic -- 5.2.3.8 TIMA -- 5.2.3.9 AMICS and INCAMineral -- 5.3 Application of automated SEM-based technologies to ore characterization -- 5.3.1 Textural analysis -- 5.3.2 Mineral abundance -- 5.3.3 Magnetite/hematite distinction -- 5.3.4 Lithotyping/microlithotyping -- 5.3.5 Grain size -- 5.3.6 Liberation, locking, and association -- 5.4 Characterization of natural and sintered iron ore using QEMSCAN -- 5.5 Summary -- 5.5.1 Advantages (strengths) -- 5.5.2 Disadvantages (weaknesses) -- 5.6 Future trends -- References -- 6 - Characterization of iron ore by visible and infrared reflectance and Raman spectroscopies -- 6.1 Introduction -- 6.2 Principles, instrumentations, and applications of reflectance spectroscopy -- 6.2.1 Reflectance spectroscopy -- 6.2.2 Reflectance spectroscopy instrumentations. , 6.2.2.1 Field spectroradiometer -- 6.2.2.2 Hyperspectral drill core and chips scanning system -- 6.2.2.3 Face mapping system -- 6.2.2.4 Remote sensing technology -- 6.2.3 Reflectance spectroscopy of iron ore minerals -- 6.2.3.1 Magnetite and maghemite -- 6.2.3.2 Goethite and hematite -- 6.2.3.3 Gangue minerals -- 6.2.3.3.1 Quartz -- 6.2.3.3.2 Clay minerals -- 6.2.3.3.3 Chlorite -- 6.2.3.3.4 Talc -- 6.2.3.3.5 Amphiboles -- 6.2.3.3.6 Carbonates -- 6.2.4 Application of reflectance spectroscopy to iron ore characterization -- 6.3 Principles, instrumentations, and applications of Raman spectroscopy -- 6.3.1 Raman spectroscopy -- 6.3.2 Raman spectroscopy instrumentations -- 6.3.2.1 Portable Raman spectroscope -- 6.3.2.2 Raman microscope -- 6.3.3 Raman spectroscopy of iron ore minerals -- 6.4 Future trends -- References -- Part Two - Extraction, comminution, classification, and beneficiation of iron ore -- 7 - Iron ore extraction techniques -- 7.1 Introduction -- 7.2 Iron ore mining-an historical UK context -- 7.2.1 Underground mining techniques in the Cleveland ironstone mines -- 7.2.2 Underground mining techniques in the North Lincolnshire mines -- 7.3 Underground iron ore mining: Kiruna, Sweden -- 7.3.1 Introduction: the worldwide iron ore market -- 7.3.2 Location and geology -- 7.3.3 Mining method: sublevel caving -- 7.3.4 The 1365 m level -- 7.4 Modern-day surface mining: the Pilbara deposit -- 7.5 Modern day surface mining: iron ore in Minas Gerais Province, Brazil -- 7.6 Conclusions -- References -- 8 - Comminution and classification technologies of iron ore -- 8.1 Introduction -- 8.2 Iron ore crushing and screening -- 8.2.1 Crushers -- 8.2.1.1 Jaw crushers -- 8.2.1.2 Gyratory and cone crushers -- 8.2.2 Screens -- 8.2.3 Typical crushing and screening flowsheets. , 8.2.3.1 Rio Tinto iron ore processing plants -- 8.2.3.2 BHP Newman iron ore handling hub -- 8.2.3.3 Roy Hill operation -- 8.2.3.4 Vale S11D project -- 8.2.3.5 Mobile crushing and screening plant applications for small to medium sized iron ore projects -- 8.3 Iron ore grinding and classification -- 8.3.1 Examples of iron ore grinding and classification flowsheets -- 8.3.2 Grinding equipment -- 8.3.2.1 Tumbling mills -- 8.3.2.1.1 Autogenous and semiautogenous mills -- 8.3.2.1.2 Ball mills -- 8.3.3 Classification equipment -- 8.3.3.1 Hydrocyclone separators -- 8.3.3.2 Air classifiers -- 8.4 Future trends in iron ore comminution and classification -- 8.4.1 Fine grinding technologies-stirred milling -- 8.4.1.1 Tower mill, Vertimill, and Velix vertical helix stirred mill -- 8.4.1.2 IsaMill -- 8.4.1.3 Outotec HIGmill -- 8.4.1 Fine screening technologies -- 8.4.2 High pressure grinding rolls -- 8.4.3 CAPEX and OPEX considerations -- References -- 9 - Physical separation of iron ore: magnetic separation -- 9.1 Introduction -- 9.2 Principle of magnetic separation -- 9.2.1 Magnetic force on particles -- 9.2.2 Magnetic susceptibilities of minerals in iron ore -- 9.2.2.1 Iron minerals -- 9.2.2.2 Gangue minerals in iron ores -- 9.3 Magnetic separators -- 9.3.1 Low-intensity magnetic separators -- 9.3.2 High intensity and high gradient magnetic separators -- 9.4 Typical flow sheets for upgrading low-grade iron ores -- 9.4.1 Major principles for selection of separation methods -- 9.4.2 Typical flow sheets for upgrading magnetite ores -- 9.4.3 Typical flow sheets for upgrading oxidized iron ores -- 9.5 Challenges and recent advances in upgrading low-grade iron ores using magnetic separation -- 9.5.1 Development of large magnetic separator units -- 9.5.2 Utilization of subeconomic iron ores and wastes. , 9.5.3 Development of dry magnetic separators.
    Additional Edition: Print version: Lu, Liming Iron Ore San Diego : Elsevier Science & Technology,c2021 ISBN 9780128202265
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Duxford, England :Woodhead Publishing,
    UID:
    edoccha_9960099790902883
    Format: 1 online resource (842 pages) : , illustrations (black and white, and colour)
    Edition: Second edition.
    ISBN: 0-12-820227-0
    Series Statement: Woodhead Publishing series in metals and surface engineering
    Content: Iron Ore: Mineralogy, Processing and Environmental Sustainability, Second Edition covers all aspects surrounding the second most important commodity behind oil. As an essential input for the production of crude steel, iron ore feeds the world's largest trillion-dollar-a-year metal market and is the backbone of the global infrastructure. The book explores new ore types and the development of more efficient processes/technologies to minimize environmental footprints. This new edition includes all new case studies and technologies, along with new chapters on the chemical analysis of iron ore, thermal and dry beneficiation of iron ore, and discussions of alternative iron making technologies. In addition, information on recycling solid wastes and P-bearing slag generated in steel mills, sustainable mining, and low emission iron making technologies from regional perspectives, particularly Europe and Japan, are included. This work will be a valuable resource for anyone involved in the iron ore industry.
    Note: Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- Preface -- Preface to the second edition -- Biography -- 1 - Introduction: Overview of the global iron ore industry -- 1.1 Introduction -- 1.1.1 World steel and iron ore production -- 1.1.2 World iron ore trade -- 1.1.3 World iron ore reserves and resources -- 1.2 Iron ore mining operations by country -- 1.2.1 Australia -- 1.2.2 Brazil -- 1.2.3 China -- 1.2.4 India -- 1.2.5 Russia -- 1.2.6 South Africa -- 1.2.7 Ukraine -- 1.2.8 Canada -- 1.2.9 USA -- 1.2.10 Sweden -- 1.3 Innovative technologies adopted by iron ore producers -- 1.3.1 Autonomous mining vehicles -- 1.3.2 Robotic technology -- 1.3.3 Remote operating centers -- 1.3.4 Sensing technology/real-time data acquisition -- 1.3.5 Digital technology -- 1.3.5.1 Spatial data visualization -- 1.3.5.2 Geographic information systems -- 1.3.5.3 Artificial intelligence and machine learning -- 1.4 Challenges facing iron ore industry -- 1.4.1 Depleting high-grade iron ore reserves -- 1.4.2 GHG emissions and climate change -- 1.4.3 Health and safety -- 1.4.4 Volatility of commodity prices -- 1.4.5 Access to capital -- References -- Part One - Characterization and analysis of iron ore -- 2 - Mineralogical, chemical, and physical metallurgical characteristics of iron ore -- 2.1 Introduction -- 2.2 Mineralogy -- 2.2.1 Common iron ore and gangue minerals -- 2.2.2 Iron ore deposits -- 2.2.2.1 Deposit types -- 2.2.2.2 Iron formation-hosted iron ore deposits -- 2.2.2.3 Iron formation and replacement ore mineralogy -- 2.2.2.4 Unenriched iron formation ores -- 2.2.2.5 Martite-goethite supergene ores -- 2.2.2.6 Residual hematite ores -- 2.2.2.7 Microplaty hematite ore -- 2.2.2.8 Phanerozoic ooidal ironstones including channel iron deposits -- 2.2.2.9 Iron sands. , 2.2.2.10 Sulfur-rich sources of iron -- 2.2.2.11 Iron ore classification -- 2.3 Chemical composition -- 2.4 Physical properties -- 2.4.1 Relative hardness and lump/fine ore ratio -- 2.4.2 Lump material-handling properties -- 2.4.3 ROM properties for crushing -- 2.4.3.1 Uniaxial compressive strength -- 2.4.3.2 Impact crushability -- 2.4.4 Particle specific gravity -- 2.4.5 Material-handling properties -- 2.4.5.1 Abrasion properties -- 2.4.5.2 Frictional properties -- 2.4.5.3 Bulk density -- 2.4.6 Product particle size -- 2.4.7 Relationship between ore properties and process performance -- 2.4.7.1 Prediction of blast furnace lump quality -- 2.4.7.2 Lump DI and ore groups -- 2.5 Future trends -- References -- 3 - Quantitative XRD analysis and evaluation of iron ore, sinter, and pellets -- 3.1 Introduction -- 3.2 XRD mineral quantification -- 3.2.1 X-ray diffractometer -- 3.2.2 Principles of powder X-ray diffraction -- 3.2.3 Rietveld analysis of X-ray diffraction patterns -- 3.2.4 Sources of error in quantitative XRD analysis -- 3.2.5 Applicability of quantitative XRD analysis -- 3.3 Principal minerals of natural and sintered iron ores -- 3.4 Quantitative XRD analysis of iron ore -- 3.4.1 Quantification of iron ore minerals -- 3.4.2 Substitution assessment of impurity elements in hematite and goethite -- 3.5 Quantitative XRD analysis of iron ore sinter and pellets -- 3.5.1 Fundamental studies of sinter phases -- 3.5.2 In situ studies of sintering reactions -- 3.6 Summary -- References -- 4 - Automated optical image analysis of natural and ­sintered iron ore -- 4.1 Introduction-overview of optical image analysis technique -- 4.2 Mineralogical characteristics of iron ore and sinter -- 4.2.1 Iron ores -- 4.2.2 Sinter -- 4.3 Automated optical image analysis. , 4.3.1 Automated identification of particles and opaque minerals -- 4.3.2 Automated particle separation -- 4.3.3 Automated porosity identification -- 4.3.4 Automated identification of unidentified areas -- 4.3.5 Automated correction of mineral maps -- 4.3.6 Automated image processing -- 4.4 Application of automated OIA to natural and sintered iron ore -- References -- 5 - Quantitative analysis of iron ore using SEM-based technologies -- 5.1 Introduction -- 5.2 Principles of SEM-based technologies -- 5.2.1 Introduction to the principle of scanning electron microscopy -- 5.2.1.1 The average atomic number of a mineral or substance -- 5.2.1.2 Characteristic X-ray spectra of minerals -- 5.2.2 Sample preparation principles -- 5.2.3 Various SEM-based technologies -- 5.2.3.1 Electron back-scatter diffraction -- 5.2.3.2 Electron probe microanalysis -- 5.2.3.3 Automated mineralogical (auto-SEM) technologies -- 5.2.3.4 Auto-SEMs with specific regard to iron ore analysis -- 5.2.3.5 QEMSCAN -- 5.2.3.6 MLA -- 5.2.3.7 Mineralogic -- 5.2.3.8 TIMA -- 5.2.3.9 AMICS and INCAMineral -- 5.3 Application of automated SEM-based technologies to ore characterization -- 5.3.1 Textural analysis -- 5.3.2 Mineral abundance -- 5.3.3 Magnetite/hematite distinction -- 5.3.4 Lithotyping/microlithotyping -- 5.3.5 Grain size -- 5.3.6 Liberation, locking, and association -- 5.4 Characterization of natural and sintered iron ore using QEMSCAN -- 5.5 Summary -- 5.5.1 Advantages (strengths) -- 5.5.2 Disadvantages (weaknesses) -- 5.6 Future trends -- References -- 6 - Characterization of iron ore by visible and infrared reflectance and Raman spectroscopies -- 6.1 Introduction -- 6.2 Principles, instrumentations, and applications of reflectance spectroscopy -- 6.2.1 Reflectance spectroscopy -- 6.2.2 Reflectance spectroscopy instrumentations. , 6.2.2.1 Field spectroradiometer -- 6.2.2.2 Hyperspectral drill core and chips scanning system -- 6.2.2.3 Face mapping system -- 6.2.2.4 Remote sensing technology -- 6.2.3 Reflectance spectroscopy of iron ore minerals -- 6.2.3.1 Magnetite and maghemite -- 6.2.3.2 Goethite and hematite -- 6.2.3.3 Gangue minerals -- 6.2.3.3.1 Quartz -- 6.2.3.3.2 Clay minerals -- 6.2.3.3.3 Chlorite -- 6.2.3.3.4 Talc -- 6.2.3.3.5 Amphiboles -- 6.2.3.3.6 Carbonates -- 6.2.4 Application of reflectance spectroscopy to iron ore characterization -- 6.3 Principles, instrumentations, and applications of Raman spectroscopy -- 6.3.1 Raman spectroscopy -- 6.3.2 Raman spectroscopy instrumentations -- 6.3.2.1 Portable Raman spectroscope -- 6.3.2.2 Raman microscope -- 6.3.3 Raman spectroscopy of iron ore minerals -- 6.4 Future trends -- References -- Part Two - Extraction, comminution, classification, and beneficiation of iron ore -- 7 - Iron ore extraction techniques -- 7.1 Introduction -- 7.2 Iron ore mining-an historical UK context -- 7.2.1 Underground mining techniques in the Cleveland ironstone mines -- 7.2.2 Underground mining techniques in the North Lincolnshire mines -- 7.3 Underground iron ore mining: Kiruna, Sweden -- 7.3.1 Introduction: the worldwide iron ore market -- 7.3.2 Location and geology -- 7.3.3 Mining method: sublevel caving -- 7.3.4 The 1365 m level -- 7.4 Modern-day surface mining: the Pilbara deposit -- 7.5 Modern day surface mining: iron ore in Minas Gerais Province, Brazil -- 7.6 Conclusions -- References -- 8 - Comminution and classification technologies of iron ore -- 8.1 Introduction -- 8.2 Iron ore crushing and screening -- 8.2.1 Crushers -- 8.2.1.1 Jaw crushers -- 8.2.1.2 Gyratory and cone crushers -- 8.2.2 Screens -- 8.2.3 Typical crushing and screening flowsheets. , 8.2.3.1 Rio Tinto iron ore processing plants -- 8.2.3.2 BHP Newman iron ore handling hub -- 8.2.3.3 Roy Hill operation -- 8.2.3.4 Vale S11D project -- 8.2.3.5 Mobile crushing and screening plant applications for small to medium sized iron ore projects -- 8.3 Iron ore grinding and classification -- 8.3.1 Examples of iron ore grinding and classification flowsheets -- 8.3.2 Grinding equipment -- 8.3.2.1 Tumbling mills -- 8.3.2.1.1 Autogenous and semiautogenous mills -- 8.3.2.1.2 Ball mills -- 8.3.3 Classification equipment -- 8.3.3.1 Hydrocyclone separators -- 8.3.3.2 Air classifiers -- 8.4 Future trends in iron ore comminution and classification -- 8.4.1 Fine grinding technologies-stirred milling -- 8.4.1.1 Tower mill, Vertimill, and Velix vertical helix stirred mill -- 8.4.1.2 IsaMill -- 8.4.1.3 Outotec HIGmill -- 8.4.1 Fine screening technologies -- 8.4.2 High pressure grinding rolls -- 8.4.3 CAPEX and OPEX considerations -- References -- 9 - Physical separation of iron ore: magnetic separation -- 9.1 Introduction -- 9.2 Principle of magnetic separation -- 9.2.1 Magnetic force on particles -- 9.2.2 Magnetic susceptibilities of minerals in iron ore -- 9.2.2.1 Iron minerals -- 9.2.2.2 Gangue minerals in iron ores -- 9.3 Magnetic separators -- 9.3.1 Low-intensity magnetic separators -- 9.3.2 High intensity and high gradient magnetic separators -- 9.4 Typical flow sheets for upgrading low-grade iron ores -- 9.4.1 Major principles for selection of separation methods -- 9.4.2 Typical flow sheets for upgrading magnetite ores -- 9.4.3 Typical flow sheets for upgrading oxidized iron ores -- 9.5 Challenges and recent advances in upgrading low-grade iron ores using magnetic separation -- 9.5.1 Development of large magnetic separator units -- 9.5.2 Utilization of subeconomic iron ores and wastes. , 9.5.3 Development of dry magnetic separators.
    Additional Edition: Print version: Lu, Liming Iron Ore San Diego : Elsevier Science & Technology,c2021 ISBN 9780128202265
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9780128222256?
Did you mean 9780128242261?
Did you mean 9780128202326?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages