UID:
almahu_9949982932102882
Format:
1 online resource (612 pages)
Edition:
First edition.
ISBN:
9780128208816
,
0128208813
Content:
This book, edited by Suresh Kumar Kailasa and others, delves into the application of nanomaterials in environmental analysis. It covers various methods and techniques employing nanomaterials for detecting and monitoring pollutants, such as metals, organic compounds, and toxic chemicals, in environmental samples. Key topics include the use of metal and carbon-based nanoparticles, graphene quantum dots, and nanostructured membranes. The book also explores the synthesis and properties of these materials and their role in enhancing analytical techniques like Raman spectroscopy and fluorescence assays. Aimed at researchers and practitioners in analytical chemistry and environmental science, it provides insights into the advantages of nanomaterials for improving environmental monitoring and pollutant remediation.
Note:
Front Cover -- Nanomaterials in Environmental Analysis -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1 Nanomaterials in measurement of pollutants in environmental samples -- 1.1 Introduction -- 1.1.1 Nanomaterials-based colorimetric approaches -- 1.1.2 Nanomaterials-based fluorescence analytical strategies -- 1.1.3 Nanomaterials-based electrochemical sensors -- 1.1.4 Nanomaterials in sample preparations for environmental analysis -- 1.1.5 Summary -- Acknowledgments -- References -- 2 Metal nanoparticles for visual detection of organic pollutants -- 2.1 Introduction -- 2.2 Organic pollutants -- 2.3 Advantages of metal nanoparticle over organic probes -- 2.4 Colorimetric chemical sensors -- 2.5 Importance of visual detection over conventional analytical methods -- 2.6 Gold nanoparticle-based sensors for organic pollutants -- 2.7 Silver nanoparticles-based colorimetric sensors -- 2.8 Upconversion nanoparticle for colorimetric sensors -- 2.9 Summary and conclusion -- References -- 3 Fluorescent metal nanoparticles for assaying of toxic chemical species -- 3.1 Introduction -- 3.2 Sources of toxic chemicals and impacts on the environment and human health -- 3.3 Fluorescent nanomaterials advantages in the detection of toxic chemicals -- 3.4 Mechanism of assaying toxic chemicals -- 3.5 Optical assaying of toxic metal ions -- 3.6 Assaying toxic anions and toxins -- 3.7 Assaying toxic pesticides -- 3.8 Conclusions -- Challenges and future prospectives -- Acknowledgments -- Abbreviations -- References -- 4 Fluorescent carbon nanoparticles for chemical species identification -- 4.1 Introduction -- 4.2 Synthesis, optical properties, and functionalization of carbon dots -- 4.2.1 Overview of the synthesis of carbon dots -- 4.2.1.1 Top-down synthesis -- 4.2.1.1.1 Arc discharge technique.
,
4.2.1.1.2 Electrochemical/chemical oxidation method -- 4.2.1.1.3 Laser ablation method -- 4.2.1.1.4 Ultrasonic treatment method -- 4.2.1.2 Bottom-up synthesis -- 4.2.1.2.1 Hydrothermal model -- 4.2.1.2.2 Microwave-assisted synthesis model -- 4.2.1.2.3 Thermal decomposition model -- 4.2.1.2.4 Carbonization synthesis method -- 4.2.1.2.5 Pyrolysis synthesis method -- 4.2.2 Optical properties of carbon dots -- 4.2.2.1 Adsorption -- 4.2.2.2 Fluorescence -- 4.2.2.3 Phosphorescence -- 4.2.2.4 Chemiluminescence -- 4.2.2.5 Electrochemiluminescence -- 4.2.3 Carbon dot functionalization -- 4.2.3.1 Heteroatom-doped carbon dots -- 4.2.3.2 Surface functionalized carbon dots -- 4.3 Carbon dots for pollutant sensing -- 4.3.1 Carbon dots for iron ion sensing in environmental water -- 4.3.2 Carbon dots for mercury ion detection in environmental water -- 4.3.3 Carbon dots for copper ion detection in an environmental sample -- 4.3.4 Carbon dots for lead ion detection in an environmental sample -- 4.3.5 Carbon dots for chromium ion detection in an environmental sample -- 4.3.6 Carbon dots for arsenic and cadmium ion detection -- 4.3.7 Carbon dots for antibiotic detection -- 4.3.8 Carbon dots for bacteria detection -- 4.4 Conclusion -- References -- 5 Graphene quantum dots in environmental pollution control -- 5.1 Introduction -- 5.2 Synthesis of graphene quantum dots -- 5.2.1 Top-down synthesis -- 5.2.2 Bottom-up synthesis -- 5.2.3 Green synthesis -- 5.3 Properties of graphene quantum dots -- 5.3.1 Physical properties -- 5.3.2 Electronic properties -- 5.3.3 Photoluminescence -- 5.3.4 Magnetic properties -- 5.3.5 Biological properties -- 5.4 Graphene quantum dots for environmental pollutant sensing -- 5.4.1 Graphene quantum dots as fluorescent sensors -- 5.4.2 Graphene quantum dots as electrochemical sensors -- 5.5 GQDs for environmental pollutant removal.
,
5.5.1 Adsorption -- 5.5.1.1 Removal of pesticides and pharmaceuticals -- 5.5.1.2 Removal of dyes -- 5.5.1.3 Removal of heavy metals -- 5.5.2 Graphene quantum dots as photocatalyst -- 5.5.2.1 Removal of pollutants -- 5.5.2.2 Removal of organic dyes -- 5.5.2.3 Antibacterial activity -- 5.6 Conclusion -- Acknowledgment -- References -- 6 Two-dimensional carbon nanomaterials in environmental analysis -- 6.1 Introduction -- 6.1.1 2D carbon nanomaterials -- 6.1.2 Graphene and graphene oxide -- 6.1.2.1 Synthesis methods -- 6.1.2.2 Properties of graphene and GO -- 6.1.3 Graphitic carbon nitride -- 6.1.3.1 Synthesis method -- 6.1.3.2 Properties of g-C3N4 -- 6.2 Applications of 2D carbon nanomaterials in environmental analysis -- 6.2.1 Environmental heavy metal pollution -- 6.2.2 Environmental organic pollution -- 6.2.3 Environmental gas pollution -- 6.2.4 Environmental bacterial pollution -- 6.2.5 Environmental antibiotic pollution -- 6.3 Conclusions and future perspectives -- References -- 7 Nanomaterials-based electroanalytical techniques for the identification of pollutants -- 7.1 Introduction -- 7.2 Types of nanomaterials used in electroanalytical techniques for pollutants monitoring -- 7.2.1 Carbon nanomaterials -- 7.2.2 Metal nanoparticles -- 7.2.3 Metal oxide nanomaterials -- 7.2.4 Bimetallic nanoparticles -- 7.2.5 Composite nanomaterials -- 7.3 Electroanalytical techniques used for monitoring pollutants -- 7.3.1 Potentiometry -- 7.3.2 Potentiostatic techniques -- 7.4 Electroanalytical monitoring of pollutants -- Abbreviation -- References -- 8 Nanomaterials in assaying of pollutants by surface-enhanced Raman spectroscopy -- 8.1 Introduction -- 8.1.1 Fundamentals of Raman spectroscopy and surface-enhanced Raman spectroscopy -- 8.1.2 Surface-enhanced Raman spectroscopy mechanism -- 8.1.2.1 Electromagnetic enhancement mechanism.
,
8.1.2.1.1 Local or near-field enhancement -- 8.1.2.1.2 Reradiation enhancement -- 8.1.2.2 Chemical enhancement mechanism -- 8.1.2.2.1 Nonresonant chemical effect -- 8.1.2.2.2 Resonant charge transfer chemical effect -- 8.2 Nanomaterials for surface-enhanced Raman spectroscopy-based environmental pollutant sensors -- 8.2.1 Coinage metal nanoparticles -- 8.2.1.1 Organic pollutants -- 8.2.1.1.1 Pesticides -- 8.2.1.1.2 Polycyclic aromatic hydrocarbons -- 8.2.1.1.3 Polychlorinated biphenyls -- 8.2.1.1.4 Antibiotics -- 8.2.1.1.5 Explosives -- 8.2.2 Heavy metal ions -- 8.2.3 Metal oxide nanoparticles -- 8.2.3.1 Organic pollutants -- 8.2.3.1.1 Pesticides -- 8.2.3.1.2 Dyes -- 8.2.3.1.3 Explosives -- 8.2.4 Metal/metal oxide hybrid nanoparticles -- 8.2.4.1 Organic pollutants -- 8.2.4.1.1 Pesticides -- 8.2.4.1.2 PCBs and other organic compounds -- 8.2.4.1.3 Dyes -- 8.2.4.1.4 Explosives -- 8.2.5 Heavy metal ions -- 8.2.6 Core-shell nanoparticles -- 8.2.6.1 Organic pollutants -- 8.2.6.1.1 Pesticides -- 8.2.6.1.2 PAHs -- 8.2.6.1.3 PCBs -- 8.2.6.1.4 Dyes -- 8.2.6.1.5 Antibiotics -- 8.2.6.1.6 Explosives -- 8.2.6.2 Heavy metal ions -- 8.2.7 Magnetic nanoparticles -- 8.2.7.1 Organic pollutants -- 8.2.7.1.1 Pesticides -- 8.2.7.1.2 PAHs and PCBs -- 8.2.7.1.3 Antibiotics -- 8.2.7.1.4 Explosives and other aromatic compounds -- 8.2.7.2 Heavy metal ions -- 8.2.8 Carbon hybrid nanomaterials -- 8.2.8.1 Organic pollutants: pesticides -- 8.2.8.1.1 PAHs, PCBs, and other compounds -- 8.2.8.1.2 Dyes -- 8.2.8.1.3 Explosives -- 8.2.8.2 Heavy metal ions -- 8.3 Summary and outlook -- Acknowledgments -- References -- 9 Functional nanomaterials for the sensing of volatile organic compounds -- 9.1 Introduction -- 9.2 Gas sensing mechanism -- 9.3 Hybrid functional nanomaterials for gas sensing application -- 9.3.1 Functionalized metal oxides for gas sensing application.
,
9.3.1.1 Zinc oxide (ZnO) -- 9.3.1.2 Tungsten oxide (WO3) -- 9.3.1.3 Tin dioxide (SnO2) -- 9.3.1.4 Titanium dioxide (TiO2) -- 9.3.2 Functionalized carbon nanomaterials for gas sensing application -- 9.3.2.1 Carbon nanotube-based gas sensors -- 9.3.2.2 Graphene and its derivative-based gas sensors -- 9.3.3 Conjugate polymers for gas sensing application -- 9.4 Conclusion and outlook -- References -- 10 Nanomaterials in sample preparation -- 10.1 Introduction -- 10.1.1 Solid-phase extraction -- 10.1.2 Solid-phase microextraction -- 10.1.3 Adsorption mechanism -- 10.2 Nanotechnology -- 10.3 Nanomaterials -- 10.3.1 Classification of nanomaterials as nanosorbents -- 10.3.1.1 Metallic nanoparticles -- 10.3.1.2 Metal oxide nanoparticles -- 10.3.1.3 Magnetic nanoparticles -- 10.3.1.4 Applications of metal nanoparticles in sample preparation techniques -- 10.4 Adsorption mechanism of metal nanoparticles -- 10.4.1 Carbon-based nanomaterials -- 10.4.1.1 Graphene oxide -- 10.4.1.2 Nanodiamonds -- 10.4.1.3 Fullerenes -- 10.4.1.4 Carbon nanotubes -- 10.4.1.5 Applications of carbon-based nanomaterials in the sample preparation process -- 10.4.2 Silicon nanomaterials -- 10.5 Conclusion -- Abbreviations -- References -- 11 Nanomaterials for removal of toxic chemical species -- 11.1 Introduction -- 11.2 Adsorption technique -- 11.2.1 Physical adsorption mechanism -- 11.2.2 Chemical adsorption mechanism -- 11.2.3 Factors affecting the adsorption -- 11.3 Nanomaterials -- 11.3.1 Nanoadsorbents -- 11.4 Applications of nanomaterials for the remediation of toxic chemicals -- 11.4.1 Metal and metal oxide nanoparticles -- 11.4.1.1 Gold nanoparticles -- 11.4.1.2 Silver nanoparticles -- 11.4.1.3 Magnetic nanoparticles -- 11.4.1.4 Titanium nanoparticles -- 11.4.1.5 Different MNPs -- 11.4.2 Carbon-based NPs -- 11.4.2.1 Graphene/graphene oxide nanomaterials.
,
11.4.2.2 Carbon nanotubes.
Additional Edition:
ISBN 9780128206430
Additional Edition:
ISBN 0128206438
Language:
English
Bookmarklink