Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
Subjects(RVK)
Keywords
Access
  • 1
    UID:
    almahu_9949945670502882
    Format: 1 online resource (554 pages)
    ISBN: 9780128208908 , 0128208902
    Note: Front Cover -- Advanced Approaches in Turbulence -- Copyright -- Contents -- Contributors -- Preface -- 1 Basics of turbulence -- 1.1 Introduction -- 1.2 Eddy diffusion -- 1.3 Scales of turbulence -- 1.3.1 Isotropic decay -- 1.3.2 Stretching and diffusion of vorticity -- 1.4 Spectral equations -- 1.4.1 Isotropic turbulence -- 1.4.2 Shear and streaks -- 1.5 Averaged equations -- 1.5.1 Jets -- 1.5.2 Boundary layer -- 1.6 The form of turbulence models -- 1.6.1 Two equation models -- 1.6.2 Reynolds stress transport -- 1.7 Conclusion -- References -- 2 Direct numerical and large-eddy simulation of complex turbulent flows -- 2.1 Introduction -- 2.2 Error as a function of scale -- 2.2.1 Modified wavenumber -- 2.2.2 Nonlinear sources of error -- 2.2.3 Time advancement error as a function of scale -- 2.3 Analysis of numerical errors in large-eddy simulation using statistical closure theory -- 2.3.1 EDQNM closure -- 2.3.2 EDQNM-LES and the inclusion of numerical error -- 2.3.3 EDQNM model -- 2.3.4 Relative magnitudes of error -- 2.4 Simulations in complex geometries -- 2.4.1 Decay of isotropic turbulence -- 2.4.2 Gas turbine combustor -- 2.5 Simulating the flow around moving bodies -- 2.5.1 Fluid phase -- 2.5.2 Solid phase -- 2.5.3 The effects of interpolation -- 2.5.4 Particles in a turbulent channel -- 2.6 What is a `canonical' flow? -- 2.6.1 Jets in crossflow -- 2.6.2 DNS of turbulent channel flow over random rough surfaces -- 2.7 The analysis of `big data' -- 2.7.1 DMD of large datasets and numerical error -- 2.7.2 Analysis of wall-pressure fluctuation sources in turbulent channel flow -- 2.8 Bridging the Reynolds number divide -- 2.9 Concluding remarks -- Acknowledgments -- References -- 3 Large-eddy simulations -- 3.1 Introduction -- 3.1.1 Motivation -- 3.2 Governing equations -- 3.2.1 Filtering. , 3.2.2 The filtered equations of motion-the incompressible case -- 3.2.3 The filtered equations of motion-the compressible case -- 3.2.4 Resolution requirements -- 3.3 Subfilter-scale modeling -- 3.3.1 Energy-transfer mechanisms -- 3.3.2 Eddy-viscosity models -- 3.3.3 Non-eddy-viscosity models -- 3.3.4 Implicit LES -- 3.4 Case studies -- 3.4.1 Flow over river dunes -- 3.4.2 Flows over rough walls -- 3.4.3 Azimuthal vortices in an impinging jet -- 3.5 Wall modeled large-eddy simulations -- 3.6 Challenges -- 3.6.1 Computational cost -- 3.6.2 Complex geometries -- 3.6.3 Subfilter-scale modeling -- 3.6.4 URANS and LES -- 3.7 Outlook -- Acknowledgments -- References -- 4 Hybrid RANS-LES Methods -- Introduction, general motivation, and examples -- Classification of hybrid approaches -- ``RANS before LES'' vs ``RANS under LES'' approaches -- DNS-to-RANS bridging approaches -- Zonal vs non-zonal methods -- Versions of detached-eddy simulation -- Definition of the model length scale -- Log-Layer Mismatch -- Guidelines for users -- Grid design -- Time integration -- Conclusions -- Acknowledgments -- References -- 5 Closure modeling -- 5.1 Introduction -- 5.2 Governing flow equations -- 5.2.1 The continuity equation -- 5.2.2 The momentum equation -- 5.3 Turbulent mean flow -- 5.3.1 Time-averaged Navier-Stokes -- 5.3.1.1 Boundary-layer approximation -- 5.3.1.2 Force balance, channel flow -- 5.3.2 Wall region in fully developed channel flow -- 5.3.3 Reynolds stresses in fully developed channel flow -- 5.4 Transport equations for turbulent kinetic energy -- 5.4.1 Rules for time averaging -- 5.4.1.1 What is the difference between u'1 u'2 and u'1 u'2? -- 5.4.1.2 What is the difference between u1´2 and u'12? -- 5.4.1.3 Show that ū1 u1´2 = ū1 u1´2 -- 5.4.1.4 Show that ū1 = ū1 -- 5.4.2 The exact k equation -- 5.5 Transport equations for Reynolds stresses. , 5.5.1 Source terms -- 5.5.2 Reynolds shear stress vs. the velocity gradient -- 5.5.2.1 Diffusion terms -- 5.5.2.2 Dissipation term, εij -- 5.5.2.3 Slow pressure-strain term -- 5.5.2.4 Rapid pressure-strain term -- 5.5.2.5 Wall model of the pressure-strain term -- 5.5.3 The modeled u'iu'j equation with IP model -- 5.5.4 Algebraic Reynolds Stress Model (ASM) -- 5.5.5 Explicit ASM (EASM or EARSM) -- 5.6 The k- ε model -- 5.6.1 The k equation -- 5.6.2 The ε equation -- 5.6.3 The Boussinesq assumption -- 5.6.4 Modeling assumptions -- 5.6.4.1 Production terms -- 5.6.5 The k- ε model -- 5.6.6 Wall-boundary conditions -- 5.6.6.1 Wall functions -- 5.6.6.2 Low-re number turbulence models -- 5.6.6.3 Low-re k- ε models -- 5.6.6.4 Wall-boundary condition for k -- 5.6.6.5 Different ways of prescribing ε at or near the wall -- 5.6.7 Curvature effects -- 5.6.8 Stagnation flow -- 5.6.9 RSM/ASM versus k- ε models -- 5.7 Realizability -- 5.8 The V2F model -- 5.8.1 Modified V2F model -- 5.8.2 Realizable V2F model -- 5.8.3 To ensure that v2< -- =2k/3 -- 5.9 The SST model -- References -- 6 Data-driven and operator-based tools for the analysis of turbulent flows -- 6.1 Introduction -- 6.2 General decompositions -- 6.3 Proper orthogonal decomposition and its variants -- 6.3.1 Spatial and temporal POD -- 6.3.2 Spatio-temporal POD -- 6.3.3 Frequential or spectral POD -- 6.3.4 Advantages, limitations, closing thoughts -- 6.4 Dynamic mode decomposition and its variants -- 6.4.1 Koopman analysis -- 6.4.2 Koopman eigenfunctions and dynamic modes -- 6.4.3 Amplitudes by sparsity promotion -- 6.4.4 Extended Dynamic Mode Decomposition -- 6.4.5 Further extensions -- 6.4.6 Advantages, limitations, closing thoughts -- 6.5 Resolvent analysis -- 6.5.1 Mathematical framework -- 6.5.2 Advantages, limitations, closing thoughts -- 6.6 Algorithmic issues and improvements. , 6.6.1 Parallelization -- 6.6.2 Randomization and sketching -- 6.6.3 Streaming and incremental algorithms -- 6.6.4 Robustification and outlier removal -- 6.7 Other decompositions -- 6.7.1 Dealing with multimodality -- 6.7.2 Transfer operators and Ulam's method -- 6.7.3 Multiscale analysis and wavelets -- 6.7.4 Machine learning, dictionary learning, sparsity concepts -- 6.8 Conclusions -- References -- 7 Multiphase turbulence -- 7.1 Introduction -- 7.2 Models for disperse multiphase flows -- 7.2.1 Particle-resolved direct-numerical simulation -- 7.2.2 Eulerian-Lagrangian approach -- 7.2.3 Eulerian-Eulerian approach -- 7.2.4 Range of applicability of Eulerian models -- 7.3 Pseudoturbulence -- 7.3.1 Basic properties -- 7.3.2 Experimental results -- 7.3.3 PR-DNS results -- 7.3.4 Pseudoturbulence models -- 7.4 Multiphase turbulence models -- 7.4.1 Reynolds-averaged Eulerian models -- 7.4.2 Detailed example for compressible multiphase flow -- 7.4.2.1 Mass balances -- 7.4.2.2 Momentum balances -- 7.4.2.3 Total energy balances -- 7.4.3 Balances for correlated and uncorrelated energy -- 7.4.4 Balances for the turbulent dissipation rate -- 7.4.5 Balances for Reynolds stresses -- 7.4.6 Limiting cases -- 7.4.7 Concluding remarks -- 7.5 Summary and perspectives -- References -- 8 Transition to turbulence -- 8.1 The phenomena of transition -- 8.1.1 Orderly transition -- 8.1.2 Bypass transition -- 8.1.3 Separated flow -- 8.2 Linear theories -- 8.2.1 Orderly transition -- 8.2.2 Parabolized stability -- 8.2.3 Bypass transition -- 8.2.4 Initial value problem -- 8.3 Secondary instabilities and breakdown to turbulence -- 8.4 Intermittency models -- 8.5 Summary -- References -- 9 Turbulence in compressible flows -- 9.1 Introduction -- 9.1.1 Linearized modes -- 9.1.1.1 Acoustic modes -- 9.1.1.2 Vortical modes -- 9.1.1.3 Entropic modes. , 9.1.2 A wider perspective on modal decomposition -- 9.2 Classification of compressible turbulent-flow problems -- 9.2.1 Quasi-incompressible flows and low-Mach variable-density flows -- 9.2.2 Compressed turbulence -- 9.2.3 Compressible homogeneous turbulence -- 9.2.4 Compressible free shear flows -- 9.2.5 Boundary layers and shock interactions -- 9.2.6 Thermoacoustics and resonant flow acoustics -- 9.3 Conservation equations: mass, momentum, and energy transport -- 9.4 Statistical description of compressible turbulent flows -- 9.4.1 Favre averaging -- 9.4.2 Conservation equations using Favre-decomposition -- 9.4.2.1 Related transport equations -- 9.4.2.2 Specific volume and density fluctuations -- 9.4.3 Summary of physical processes in variable-density and compressible flows -- 9.4.3.1 Differential acceleration -- 9.4.3.2 Counter-gradient transport -- 9.4.3.3 Baroclinic vorticity generation -- 9.5 Homogeneous turbulence dynamics with compressibility -- 9.5.1 Compressible isotropic turbulence -- 9.5.1.1 Dilatational dissipation and shocklets -- 9.6 Compressibility effects in free-shear flows -- 9.6.1 Direct effects of compressibility on turbulence: compressible mixing layer -- 9.6.2 Summary of observational evidence -- 9.6.3 Explanatory hypotheses -- 9.6.3.1 Suppression of shear instability -- 9.6.3.2 Dilatational dissipation and shocklets -- 9.6.3.3 Indirect effects of compressibility: change in turbulence structure -- 9.6.4 Application to compressible jets and wakes -- 9.7 Compressible wall-bounded turbulence -- 9.7.1 Steady laminar Couette flow -- 9.7.2 Steady compressible channel flow -- 9.7.2.1 Van driest-type scaling of the mean velocity -- 9.7.2.2 Semi-local scaling -- 9.7.3 Supersonic turbulent boundary layers -- 9.7.3.1 Mean temperature profile -- 9.7.3.2 Strong Reynolds analogy -- 9.7.3.3 An update on semi-local scaling. , 9.8 Shock-turbulence interaction.
    Additional Edition: ISBN 9780128207741
    Additional Edition: ISBN 0128207744
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    b3kat_BV047466789
    Format: 538 Seiten
    ISBN: 9780128207741
    Content: Front Cover -- Advanced Approaches in Turbulence -- Copyright -- Contents -- Contributors -- Preface -- 1 Basics of turbulence -- 1.1 Introduction -- 1.2 Eddy diffusion -- 1.3 Scales of turbulence -- 1.3.1 Isotropic decay -- 1.3.2 Stretching and diffusion of vorticity -- 1.4 Spectral equations -- 1.4.1 Isotropic turbulence -- 1.4.2 Shear and streaks -- 1.5 Averaged equations -- 1.5.1 Jets -- 1.5.2 Boundary layer -- 1.6 The form of turbulence models -- 1.6.1 Two equation models -- 1.6.2 Reynolds stress transport -- 1.7 Conclusion -- References -- 2 Direct numerical and large-eddy simulation of complex turbulent flows -- 2.1 Introduction -- 2.2 Error as a function of scale -- 2.2.1 Modified wavenumber -- 2.2.2 Nonlinear sources of error -- 2.2.3 Time advancement error as a function of scale -- 2.3 Analysis of numerical errors in large-eddy simulation using statistical closure theory -- 2.3.1 EDQNM closure -- 2.3.2 EDQNM-LES and the inclusion of numerical error -- 2.3.3 EDQNM model -- 2.3.4 Relative magnitudes of error -- 2.4 Simulations in complex geometries -- 2.4.1 Decay of isotropic turbulence -- 2.4.2 Gas turbine combustor -- 2.5 Simulating the flow around moving bodies -- 2.5.1 Fluid phase -- 2.5.2 Solid phase -- 2.5.3 The effects of interpolation -- 2.5.4 Particles in a turbulent channel -- 2.6 What is a 'canonical' flow? -- 2.6.1 Jets in crossflow -- 2.6.2 DNS of turbulent channel flow over random rough surfaces -- 2.7 The analysis of 'big data' -- 2.7.1 DMD of large datasets and numerical error -- 2.7.2 Analysis of wall-pressure fluctuation sources in turbulent channel flow -- 2.8 Bridging the Reynolds number divide -- 2.9 Concluding remarks -- Acknowledgments -- References -- 3 Large-eddy simulations -- 3.1 Introduction -- 3.1.1 Motivation -- 3.2 Governing equations -- 3.2.1 Filtering
    Note: Description based on publisher supplied metadata and other sources
    Additional Edition: Erscheint auch als Online-Ausgabe ISBN 978-0-12-820890-8
    Language: English
    Subjects: Physics
    RVK:
    Keywords: Turbulente Strömung
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9780128028308?
Did you mean 9780128028902?
Did you mean 9780128028988?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages