Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
  • 1
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier,
    UID:
    almahu_9949772198002882
    Umfang: 1 online resource (640 pages)
    Ausgabe: 2nd ed.
    ISBN: 9780323984218
    Serie: Micro and Nano Technologies Series
    Anmerkung: Front Cover -- Hot Embossing -- Copyright -- Contents -- Preface -- 2nd edition -- Preface -- 1st edition -- Preface -- Acknowledgments -- 2nd edition -- Acknowledgments -- 1st edition -- Acknowledgments -- 1 Introduction -- 1.1 Micro- and nanostructures -- 1.2 Hot embossing and nanoimprint replication process -- 1.3 Historic example of (micro) hot embossing -- 1.4 Development of micro hot embossing -- 1.5 Content and aim of the book -- 1.6 Detailed book structure -- References -- 2 Replication processes -- 2.1 Classification of micro- and nanostructures for replication -- 2.2 Micro replication processes -- 2.3 Micro reaction injection molding (RIM) -- 2.3.1 Process -- 2.3.2 Technology of micro reaction injection molding -- 2.3.3 Materials for reaction injection molding -- 2.3.4 Cost effectiveness -- 2.3.5 Characteristics -- 2.4 Micro injection molding -- 2.4.1 Injection molding process -- 2.4.1.1 Process scheme of injection molding -- 2.4.1.2 Process steps of injection molding -- 2.4.1.3 Requirements on micro injection molding -- 2.4.2 Technology of micro injection molding -- 2.4.3 Materials for micro injection molding -- 2.4.4 Cost effectiveness -- 2.4.5 Process characteristics -- 2.5 Injection compression molding -- 2.6 Micro hot embossing -- 2.6.1 Technology of hot embossing -- 2.6.2 Materials for hot embossing -- 2.6.3 Cost effectiveness -- 2.6.4 Process characteristics -- 2.7 Micro thermoforming -- 2.7.1 Process -- 2.7.2 Technology for thermoforming -- 2.7.3 Materials for thermoforming -- 2.7.4 Cost effectiveness -- 2.7.5 Process characteristics -- 2.8 Nanoimprint -- 2.8.1 Differences from hot embossing -- 2.8.2 Nanoimprint materials -- 2.8.2.1 Thermoplastic polymers -- 2.8.2.2 UV-curing materials -- 2.8.3 Nanoimprint process and technology -- 2.8.4 Nanoimprint characteristics -- 2.9 Soft lithography -- 2.9.1 Micro contact printing. , 2.9.2 Replica molding-REM -- 2.10 Process evaluation -- 2.10.1 Evaluation criteria -- 2.10.2 Design -- 2.10.3 Materials -- 2.10.4 Technology -- 2.10.5 Cost effectiveness -- 2.10.5.1 Fixed costs -- 2.10.5.2 Variable costs -- 2.10.5.3 Total costs -- 2.11 Table of characteristic properties -- References -- 3 Hot embossing process -- 3.1 Embossing principles -- 3.1.1 Terminology -- 3.1.2 Structuring by embossing -- 3.2 Components for hot embossing -- 3.3 Process steps -- 3.4 Process flow of embossing -- 3.4.1 Metering -- 3.4.2 Heating -- 3.4.3 Embossing -- 3.5 Process parameters -- 3.6 Influencing factors -- 3.6.1 Influence of metering -- 3.6.1.1 Influence of polymer history -- 3.6.1.2 Influence of film handling -- 3.6.2 Influence of structure design -- 3.6.3 Influence of mold insert and substrate plate -- 3.6.4 Influence of the molding tool -- 3.6.5 Influence of the hot embossing machine -- References -- 4 Enhanced hot embossing processes -- 4.1 Aligned hot embossing -- 4.2 Double-sided hot embossing -- 4.3 Hierarchical hot embossing -- 4.4 Perforation of structured films -- 4.4.1 Post processing methods -- 4.4.1.1 Reactive ion etching and milling -- 4.4.1.2 Controlled fracture of residual layer -- 4.4.2 Perforation using selected substrates -- 4.4.3 Perforation using twin sheets -- 4.4.4 Hot punching -- 4.5 Thermoforming by hot embossing -- 4.6 Derived embossing processes -- 4.6.1 Roll-to-roll embossing -- 4.6.1.1 Thermal embossing -- 4.6.1.2 UV embossing -- 4.6.2 Ultrasonic embossing -- 4.6.3 Gas-assisted embossing -- 4.6.4 UV-embossing-nanoimprint -- 4.6.5 Soft embossing -- 4.6.6 3D-embossing -- 4.6.7 Hot embossing of conducting paths-MID hot embossing -- References -- 5 Hot pulling -- 5.1 Hot pulling process -- 5.1.1 Challenges of a high aspect ratio -- 5.1.2 Hot pulling by elongation -- 5.1.2.1 Process scheme -- 5.1.2.2 Process window. , 5.1.3 Hot pulling from a polymer melt -- 5.1.3.1 Process scheme -- 5.1.3.2 Process window -- 5.2 Molding tools for hot pulling -- 5.2.1 Tools for defined elongation -- 5.2.2 Random structures -- 5.3 Hot pulling materials -- 5.4 Surface properties -- 5.4.1 Hydrophobicity -- 5.4.2 Oleophilicity -- 5.4.3 Self-cleaning -- References -- 6 Thermoforming -- 6.1 Thermoforming process -- 6.1.1 Forming principles -- 6.1.1.1 Stamp forming -- 6.1.1.2 Melt forming -- 6.1.1.3 Gas forming -- 6.1.1.4 Twin sheet forming/blow molding -- 6.1.2 General process scheme -- 6.1.3 Process window -- 6.1.3.1 Combined processes -- 6.1.3.2 Pre-structured polymer films -- 6.2 Nano thermoforming -- 6.2.1 Challenge downscaling -- 6.2.2 Process of nano thermoforming -- 6.2.3 Structure overlay -- 6.3 Technology of forming -- 6.3.1 Machine requirements -- 6.3.2 Polymer films -- 6.3.2.1 Film thickness -- 6.3.2.2 Film processing -- 6.3.3 Forming tools and molds -- 6.3.4 Pressure control -- 6.3.4.1 Forming pressure -- 6.3.4.2 Pressure control system -- 6.4 Forming materials -- 6.4.1 Polymer films -- 6.4.2 Bioplastic reinforced material -- 6.4.3 Enhanced materials for forming -- 6.5 Micro thermoforming applications -- 6.5.1 Life science -- 6.5.2 Free-form structures -- References -- 7 Modeling and process simulation -- 7.1 Squeeze flow -- 7.1.1 Squeezing flow of a Newtonian fluid -- 7.1.1.1 Velocity-controlled embossing -- 7.1.1.2 Force-controlled embossing -- 7.2 Process simulation in polymer processing -- 7.2.1 Simulation of macroscopic processes -- 7.2.2 Simulation of polymer processes in the micro range -- 7.2.3 Commercial simulation software for polymer processing -- 7.3 Process simulation of hot embossing -- 7.3.1 Modeling of microstructured parts -- 7.3.2 Modeling of process steps -- 7.3.3 Modeling of material behavior -- 7.3.3.1 Shear thinning material model for the flow behavior. , 7.3.3.2 Material model for the demolding behavior -- 7.3.3.3 Material strength during demolding -- 7.3.3.4 Friction between mold and polymer -- 7.4 Process analysis -- 7.4.1 The process step of heating -- 7.4.2 The process step of embossing -- 7.4.2.1 Squeeze flow behavior -- 7.4.2.2 Characteristic pressure distribution -- 7.4.2.3 Thickness of the residual layer -- 7.4.2.4 Filling of microcavities-pressure drop estimation -- 7.4.2.5 Filling of microcavities-flow analysis -- 7.4.3 The process step of cooling -- 7.4.4 The process step of demolding -- 7.4.4.1 Contact stress -- 7.4.4.1.1 Contact stress under the impact of dwell pressure -- 7.4.4.1.2 Contact stress at the beginning of demolding -- 7.4.4.2 Stress distribution during demolding of structures -- 7.4.4.2.1 Demolding of ideal, vertical structures -- 7.4.4.2.2 Demolding of structures with undercuts -- References -- 8 Fundamentals of polymers -- 8.1 Molecular architecture -- 8.1.1 Polymer synthesis -- 8.1.2 Primary bonds -- 8.1.3 Secondary bonds -- 8.1.4 Morphology -- 8.2 Thermal states of thermoplastic polymers -- 8.2.1 Thermal behavior of amorphous polymers -- 8.2.2 Thermal behavior of semicrystalline polymers -- 8.2.3 Thermal molding windows -- 8.3 Polymer melts -- 8.3.1 Shear rheologic behavior -- 8.3.1.1 Stationary flow -- 8.3.1.2 Shear viscosity-shear thinning -- 8.3.1.3 Modeling of viscous flow -- 8.3.1.4 Temperature shift function -- 8.3.1.4.1 Arrhenius approach -- 8.3.1.4.2 WLF approach -- 8.3.2 Flow in capillaries -- 8.3.2.1 Newtonian fluid -- 8.3.2.2 Shear thinning fluid -- 8.3.3 Viscoelastic behavior of polymer melts -- 8.3.3.1 Definition of viscoelasticity -- 8.3.3.2 Mechanical models-Maxwell model -- 8.3.4 Measurement of viscosity -- 8.3.5 Strain-rheologic behavior -- 8.4 Molecular orientation and relaxation -- 8.4.1 Molecular orientation -- 8.4.2 Relaxation and retardation. , 8.4.3 Mathematical characterization of relaxation and retardation -- 8.5 Solidification -- 8.5.1 Amorphous and semicrystalline structures -- 8.5.2 p-v-T diagram -- 8.6 Solid polymers -- 8.6.1 Linear viscoelasticity in the solid state -- 8.6.2 Creeping and relaxation -- 8.6.3 Mechanical properties -- 8.6.3.1 Tensile experiments -- 8.6.3.2 Strength of polymer material during demolding -- 8.6.3.3 Dynamic mechanical analysis-DMA -- 8.7 Friction -- 8.7.1 Friction between mold and polymer -- 8.7.2 Measurement of friction between mold and polymer -- 8.7.3 Static and dynamic friction force during demolding -- 8.8 Thermal properties of polymers -- 8.8.1 Thermal material data -- 8.8.1.1 Density -- 8.8.1.2 Heat capacity -- 8.8.1.3 Heat conduction -- 8.8.1.4 Thermal diffusivity -- 8.8.2 Measurement of calorimetric properties -- 8.8.2.1 Differential thermal analysis (DTA) -- 8.8.2.2 Differential scanning calorimetry (DSC) -- References -- 9 Polymer materials for hot embossing -- 9.1 Classification of polymer materials -- 9.2 Thermoplastic polymers -- 9.2.1 Standard polymers -- 9.2.1.1 Polyethylene -- 9.2.1.2 Polypropylene -- 9.2.1.3 Polystyrene -- 9.2.1.4 Polyvinyl chloride -- 9.2.2 Technical polymers -- 9.2.2.1 Poly (methyl methacrylate) (PMMA) -- 9.2.2.2 Polycarbonate-PC -- 9.2.3 High performance polymers -- 9.2.3.1 Polysulfones (PSU) -- 9.2.3.2 Polyetheretherketone-PEEK -- 9.2.4 Co-polymers -- 9.2.4.1 Cyclic olefin copolymer-COC -- 9.2.4.2 Acrylonitrile butadiene styrene-ABS -- 9.3 Polymer blends -- 9.3.1 Blend classification -- 9.3.2 Thermoplastic elastomers-TPE -- 9.4 Polymer composites -- 9.4.1 Filled polymers -- 9.4.2 Nano composites -- 9.4.3 Fiber reinforced polymers -- 9.5 Bio plastics -- 9.5.1 Biopolymers and bioplastics -- 9.5.2 Petrochemical-based bioplastics -- 9.5.2.1 Polyvinyl alcohol (PVAL) -- 9.5.2.2 Polycaprolactone (PCL). , 9.5.3 Bio-based raw materials.
    Weitere Ausg.: Print version: Worgull, Matthias Hot Embossing San Diego : Elsevier,c2024 ISBN 9780128211939
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier,
    UID:
    edoccha_9961572115102883
    Umfang: 1 online resource (640 pages)
    Ausgabe: 2nd ed.
    ISBN: 9780323984218
    Serie: Micro and Nano Technologies Series
    Anmerkung: Front Cover -- Hot Embossing -- Copyright -- Contents -- Preface -- 2nd edition -- Preface -- 1st edition -- Preface -- Acknowledgments -- 2nd edition -- Acknowledgments -- 1st edition -- Acknowledgments -- 1 Introduction -- 1.1 Micro- and nanostructures -- 1.2 Hot embossing and nanoimprint replication process -- 1.3 Historic example of (micro) hot embossing -- 1.4 Development of micro hot embossing -- 1.5 Content and aim of the book -- 1.6 Detailed book structure -- References -- 2 Replication processes -- 2.1 Classification of micro- and nanostructures for replication -- 2.2 Micro replication processes -- 2.3 Micro reaction injection molding (RIM) -- 2.3.1 Process -- 2.3.2 Technology of micro reaction injection molding -- 2.3.3 Materials for reaction injection molding -- 2.3.4 Cost effectiveness -- 2.3.5 Characteristics -- 2.4 Micro injection molding -- 2.4.1 Injection molding process -- 2.4.1.1 Process scheme of injection molding -- 2.4.1.2 Process steps of injection molding -- 2.4.1.3 Requirements on micro injection molding -- 2.4.2 Technology of micro injection molding -- 2.4.3 Materials for micro injection molding -- 2.4.4 Cost effectiveness -- 2.4.5 Process characteristics -- 2.5 Injection compression molding -- 2.6 Micro hot embossing -- 2.6.1 Technology of hot embossing -- 2.6.2 Materials for hot embossing -- 2.6.3 Cost effectiveness -- 2.6.4 Process characteristics -- 2.7 Micro thermoforming -- 2.7.1 Process -- 2.7.2 Technology for thermoforming -- 2.7.3 Materials for thermoforming -- 2.7.4 Cost effectiveness -- 2.7.5 Process characteristics -- 2.8 Nanoimprint -- 2.8.1 Differences from hot embossing -- 2.8.2 Nanoimprint materials -- 2.8.2.1 Thermoplastic polymers -- 2.8.2.2 UV-curing materials -- 2.8.3 Nanoimprint process and technology -- 2.8.4 Nanoimprint characteristics -- 2.9 Soft lithography -- 2.9.1 Micro contact printing. , 2.9.2 Replica molding-REM -- 2.10 Process evaluation -- 2.10.1 Evaluation criteria -- 2.10.2 Design -- 2.10.3 Materials -- 2.10.4 Technology -- 2.10.5 Cost effectiveness -- 2.10.5.1 Fixed costs -- 2.10.5.2 Variable costs -- 2.10.5.3 Total costs -- 2.11 Table of characteristic properties -- References -- 3 Hot embossing process -- 3.1 Embossing principles -- 3.1.1 Terminology -- 3.1.2 Structuring by embossing -- 3.2 Components for hot embossing -- 3.3 Process steps -- 3.4 Process flow of embossing -- 3.4.1 Metering -- 3.4.2 Heating -- 3.4.3 Embossing -- 3.5 Process parameters -- 3.6 Influencing factors -- 3.6.1 Influence of metering -- 3.6.1.1 Influence of polymer history -- 3.6.1.2 Influence of film handling -- 3.6.2 Influence of structure design -- 3.6.3 Influence of mold insert and substrate plate -- 3.6.4 Influence of the molding tool -- 3.6.5 Influence of the hot embossing machine -- References -- 4 Enhanced hot embossing processes -- 4.1 Aligned hot embossing -- 4.2 Double-sided hot embossing -- 4.3 Hierarchical hot embossing -- 4.4 Perforation of structured films -- 4.4.1 Post processing methods -- 4.4.1.1 Reactive ion etching and milling -- 4.4.1.2 Controlled fracture of residual layer -- 4.4.2 Perforation using selected substrates -- 4.4.3 Perforation using twin sheets -- 4.4.4 Hot punching -- 4.5 Thermoforming by hot embossing -- 4.6 Derived embossing processes -- 4.6.1 Roll-to-roll embossing -- 4.6.1.1 Thermal embossing -- 4.6.1.2 UV embossing -- 4.6.2 Ultrasonic embossing -- 4.6.3 Gas-assisted embossing -- 4.6.4 UV-embossing-nanoimprint -- 4.6.5 Soft embossing -- 4.6.6 3D-embossing -- 4.6.7 Hot embossing of conducting paths-MID hot embossing -- References -- 5 Hot pulling -- 5.1 Hot pulling process -- 5.1.1 Challenges of a high aspect ratio -- 5.1.2 Hot pulling by elongation -- 5.1.2.1 Process scheme -- 5.1.2.2 Process window. , 5.1.3 Hot pulling from a polymer melt -- 5.1.3.1 Process scheme -- 5.1.3.2 Process window -- 5.2 Molding tools for hot pulling -- 5.2.1 Tools for defined elongation -- 5.2.2 Random structures -- 5.3 Hot pulling materials -- 5.4 Surface properties -- 5.4.1 Hydrophobicity -- 5.4.2 Oleophilicity -- 5.4.3 Self-cleaning -- References -- 6 Thermoforming -- 6.1 Thermoforming process -- 6.1.1 Forming principles -- 6.1.1.1 Stamp forming -- 6.1.1.2 Melt forming -- 6.1.1.3 Gas forming -- 6.1.1.4 Twin sheet forming/blow molding -- 6.1.2 General process scheme -- 6.1.3 Process window -- 6.1.3.1 Combined processes -- 6.1.3.2 Pre-structured polymer films -- 6.2 Nano thermoforming -- 6.2.1 Challenge downscaling -- 6.2.2 Process of nano thermoforming -- 6.2.3 Structure overlay -- 6.3 Technology of forming -- 6.3.1 Machine requirements -- 6.3.2 Polymer films -- 6.3.2.1 Film thickness -- 6.3.2.2 Film processing -- 6.3.3 Forming tools and molds -- 6.3.4 Pressure control -- 6.3.4.1 Forming pressure -- 6.3.4.2 Pressure control system -- 6.4 Forming materials -- 6.4.1 Polymer films -- 6.4.2 Bioplastic reinforced material -- 6.4.3 Enhanced materials for forming -- 6.5 Micro thermoforming applications -- 6.5.1 Life science -- 6.5.2 Free-form structures -- References -- 7 Modeling and process simulation -- 7.1 Squeeze flow -- 7.1.1 Squeezing flow of a Newtonian fluid -- 7.1.1.1 Velocity-controlled embossing -- 7.1.1.2 Force-controlled embossing -- 7.2 Process simulation in polymer processing -- 7.2.1 Simulation of macroscopic processes -- 7.2.2 Simulation of polymer processes in the micro range -- 7.2.3 Commercial simulation software for polymer processing -- 7.3 Process simulation of hot embossing -- 7.3.1 Modeling of microstructured parts -- 7.3.2 Modeling of process steps -- 7.3.3 Modeling of material behavior -- 7.3.3.1 Shear thinning material model for the flow behavior. , 7.3.3.2 Material model for the demolding behavior -- 7.3.3.3 Material strength during demolding -- 7.3.3.4 Friction between mold and polymer -- 7.4 Process analysis -- 7.4.1 The process step of heating -- 7.4.2 The process step of embossing -- 7.4.2.1 Squeeze flow behavior -- 7.4.2.2 Characteristic pressure distribution -- 7.4.2.3 Thickness of the residual layer -- 7.4.2.4 Filling of microcavities-pressure drop estimation -- 7.4.2.5 Filling of microcavities-flow analysis -- 7.4.3 The process step of cooling -- 7.4.4 The process step of demolding -- 7.4.4.1 Contact stress -- 7.4.4.1.1 Contact stress under the impact of dwell pressure -- 7.4.4.1.2 Contact stress at the beginning of demolding -- 7.4.4.2 Stress distribution during demolding of structures -- 7.4.4.2.1 Demolding of ideal, vertical structures -- 7.4.4.2.2 Demolding of structures with undercuts -- References -- 8 Fundamentals of polymers -- 8.1 Molecular architecture -- 8.1.1 Polymer synthesis -- 8.1.2 Primary bonds -- 8.1.3 Secondary bonds -- 8.1.4 Morphology -- 8.2 Thermal states of thermoplastic polymers -- 8.2.1 Thermal behavior of amorphous polymers -- 8.2.2 Thermal behavior of semicrystalline polymers -- 8.2.3 Thermal molding windows -- 8.3 Polymer melts -- 8.3.1 Shear rheologic behavior -- 8.3.1.1 Stationary flow -- 8.3.1.2 Shear viscosity-shear thinning -- 8.3.1.3 Modeling of viscous flow -- 8.3.1.4 Temperature shift function -- 8.3.1.4.1 Arrhenius approach -- 8.3.1.4.2 WLF approach -- 8.3.2 Flow in capillaries -- 8.3.2.1 Newtonian fluid -- 8.3.2.2 Shear thinning fluid -- 8.3.3 Viscoelastic behavior of polymer melts -- 8.3.3.1 Definition of viscoelasticity -- 8.3.3.2 Mechanical models-Maxwell model -- 8.3.4 Measurement of viscosity -- 8.3.5 Strain-rheologic behavior -- 8.4 Molecular orientation and relaxation -- 8.4.1 Molecular orientation -- 8.4.2 Relaxation and retardation. , 8.4.3 Mathematical characterization of relaxation and retardation -- 8.5 Solidification -- 8.5.1 Amorphous and semicrystalline structures -- 8.5.2 p-v-T diagram -- 8.6 Solid polymers -- 8.6.1 Linear viscoelasticity in the solid state -- 8.6.2 Creeping and relaxation -- 8.6.3 Mechanical properties -- 8.6.3.1 Tensile experiments -- 8.6.3.2 Strength of polymer material during demolding -- 8.6.3.3 Dynamic mechanical analysis-DMA -- 8.7 Friction -- 8.7.1 Friction between mold and polymer -- 8.7.2 Measurement of friction between mold and polymer -- 8.7.3 Static and dynamic friction force during demolding -- 8.8 Thermal properties of polymers -- 8.8.1 Thermal material data -- 8.8.1.1 Density -- 8.8.1.2 Heat capacity -- 8.8.1.3 Heat conduction -- 8.8.1.4 Thermal diffusivity -- 8.8.2 Measurement of calorimetric properties -- 8.8.2.1 Differential thermal analysis (DTA) -- 8.8.2.2 Differential scanning calorimetry (DSC) -- References -- 9 Polymer materials for hot embossing -- 9.1 Classification of polymer materials -- 9.2 Thermoplastic polymers -- 9.2.1 Standard polymers -- 9.2.1.1 Polyethylene -- 9.2.1.2 Polypropylene -- 9.2.1.3 Polystyrene -- 9.2.1.4 Polyvinyl chloride -- 9.2.2 Technical polymers -- 9.2.2.1 Poly (methyl methacrylate) (PMMA) -- 9.2.2.2 Polycarbonate-PC -- 9.2.3 High performance polymers -- 9.2.3.1 Polysulfones (PSU) -- 9.2.3.2 Polyetheretherketone-PEEK -- 9.2.4 Co-polymers -- 9.2.4.1 Cyclic olefin copolymer-COC -- 9.2.4.2 Acrylonitrile butadiene styrene-ABS -- 9.3 Polymer blends -- 9.3.1 Blend classification -- 9.3.2 Thermoplastic elastomers-TPE -- 9.4 Polymer composites -- 9.4.1 Filled polymers -- 9.4.2 Nano composites -- 9.4.3 Fiber reinforced polymers -- 9.5 Bio plastics -- 9.5.1 Biopolymers and bioplastics -- 9.5.2 Petrochemical-based bioplastics -- 9.5.2.1 Polyvinyl alcohol (PVAL) -- 9.5.2.2 Polycaprolactone (PCL). , 9.5.3 Bio-based raw materials.
    Weitere Ausg.: Print version: Worgull, Matthias Hot Embossing San Diego : Elsevier,c2024 ISBN 9780128211939
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier,
    UID:
    edocfu_9961572115102883
    Umfang: 1 online resource (640 pages)
    Ausgabe: 2nd ed.
    ISBN: 9780323984218
    Serie: Micro and Nano Technologies Series
    Anmerkung: Front Cover -- Hot Embossing -- Copyright -- Contents -- Preface -- 2nd edition -- Preface -- 1st edition -- Preface -- Acknowledgments -- 2nd edition -- Acknowledgments -- 1st edition -- Acknowledgments -- 1 Introduction -- 1.1 Micro- and nanostructures -- 1.2 Hot embossing and nanoimprint replication process -- 1.3 Historic example of (micro) hot embossing -- 1.4 Development of micro hot embossing -- 1.5 Content and aim of the book -- 1.6 Detailed book structure -- References -- 2 Replication processes -- 2.1 Classification of micro- and nanostructures for replication -- 2.2 Micro replication processes -- 2.3 Micro reaction injection molding (RIM) -- 2.3.1 Process -- 2.3.2 Technology of micro reaction injection molding -- 2.3.3 Materials for reaction injection molding -- 2.3.4 Cost effectiveness -- 2.3.5 Characteristics -- 2.4 Micro injection molding -- 2.4.1 Injection molding process -- 2.4.1.1 Process scheme of injection molding -- 2.4.1.2 Process steps of injection molding -- 2.4.1.3 Requirements on micro injection molding -- 2.4.2 Technology of micro injection molding -- 2.4.3 Materials for micro injection molding -- 2.4.4 Cost effectiveness -- 2.4.5 Process characteristics -- 2.5 Injection compression molding -- 2.6 Micro hot embossing -- 2.6.1 Technology of hot embossing -- 2.6.2 Materials for hot embossing -- 2.6.3 Cost effectiveness -- 2.6.4 Process characteristics -- 2.7 Micro thermoforming -- 2.7.1 Process -- 2.7.2 Technology for thermoforming -- 2.7.3 Materials for thermoforming -- 2.7.4 Cost effectiveness -- 2.7.5 Process characteristics -- 2.8 Nanoimprint -- 2.8.1 Differences from hot embossing -- 2.8.2 Nanoimprint materials -- 2.8.2.1 Thermoplastic polymers -- 2.8.2.2 UV-curing materials -- 2.8.3 Nanoimprint process and technology -- 2.8.4 Nanoimprint characteristics -- 2.9 Soft lithography -- 2.9.1 Micro contact printing. , 2.9.2 Replica molding-REM -- 2.10 Process evaluation -- 2.10.1 Evaluation criteria -- 2.10.2 Design -- 2.10.3 Materials -- 2.10.4 Technology -- 2.10.5 Cost effectiveness -- 2.10.5.1 Fixed costs -- 2.10.5.2 Variable costs -- 2.10.5.3 Total costs -- 2.11 Table of characteristic properties -- References -- 3 Hot embossing process -- 3.1 Embossing principles -- 3.1.1 Terminology -- 3.1.2 Structuring by embossing -- 3.2 Components for hot embossing -- 3.3 Process steps -- 3.4 Process flow of embossing -- 3.4.1 Metering -- 3.4.2 Heating -- 3.4.3 Embossing -- 3.5 Process parameters -- 3.6 Influencing factors -- 3.6.1 Influence of metering -- 3.6.1.1 Influence of polymer history -- 3.6.1.2 Influence of film handling -- 3.6.2 Influence of structure design -- 3.6.3 Influence of mold insert and substrate plate -- 3.6.4 Influence of the molding tool -- 3.6.5 Influence of the hot embossing machine -- References -- 4 Enhanced hot embossing processes -- 4.1 Aligned hot embossing -- 4.2 Double-sided hot embossing -- 4.3 Hierarchical hot embossing -- 4.4 Perforation of structured films -- 4.4.1 Post processing methods -- 4.4.1.1 Reactive ion etching and milling -- 4.4.1.2 Controlled fracture of residual layer -- 4.4.2 Perforation using selected substrates -- 4.4.3 Perforation using twin sheets -- 4.4.4 Hot punching -- 4.5 Thermoforming by hot embossing -- 4.6 Derived embossing processes -- 4.6.1 Roll-to-roll embossing -- 4.6.1.1 Thermal embossing -- 4.6.1.2 UV embossing -- 4.6.2 Ultrasonic embossing -- 4.6.3 Gas-assisted embossing -- 4.6.4 UV-embossing-nanoimprint -- 4.6.5 Soft embossing -- 4.6.6 3D-embossing -- 4.6.7 Hot embossing of conducting paths-MID hot embossing -- References -- 5 Hot pulling -- 5.1 Hot pulling process -- 5.1.1 Challenges of a high aspect ratio -- 5.1.2 Hot pulling by elongation -- 5.1.2.1 Process scheme -- 5.1.2.2 Process window. , 5.1.3 Hot pulling from a polymer melt -- 5.1.3.1 Process scheme -- 5.1.3.2 Process window -- 5.2 Molding tools for hot pulling -- 5.2.1 Tools for defined elongation -- 5.2.2 Random structures -- 5.3 Hot pulling materials -- 5.4 Surface properties -- 5.4.1 Hydrophobicity -- 5.4.2 Oleophilicity -- 5.4.3 Self-cleaning -- References -- 6 Thermoforming -- 6.1 Thermoforming process -- 6.1.1 Forming principles -- 6.1.1.1 Stamp forming -- 6.1.1.2 Melt forming -- 6.1.1.3 Gas forming -- 6.1.1.4 Twin sheet forming/blow molding -- 6.1.2 General process scheme -- 6.1.3 Process window -- 6.1.3.1 Combined processes -- 6.1.3.2 Pre-structured polymer films -- 6.2 Nano thermoforming -- 6.2.1 Challenge downscaling -- 6.2.2 Process of nano thermoforming -- 6.2.3 Structure overlay -- 6.3 Technology of forming -- 6.3.1 Machine requirements -- 6.3.2 Polymer films -- 6.3.2.1 Film thickness -- 6.3.2.2 Film processing -- 6.3.3 Forming tools and molds -- 6.3.4 Pressure control -- 6.3.4.1 Forming pressure -- 6.3.4.2 Pressure control system -- 6.4 Forming materials -- 6.4.1 Polymer films -- 6.4.2 Bioplastic reinforced material -- 6.4.3 Enhanced materials for forming -- 6.5 Micro thermoforming applications -- 6.5.1 Life science -- 6.5.2 Free-form structures -- References -- 7 Modeling and process simulation -- 7.1 Squeeze flow -- 7.1.1 Squeezing flow of a Newtonian fluid -- 7.1.1.1 Velocity-controlled embossing -- 7.1.1.2 Force-controlled embossing -- 7.2 Process simulation in polymer processing -- 7.2.1 Simulation of macroscopic processes -- 7.2.2 Simulation of polymer processes in the micro range -- 7.2.3 Commercial simulation software for polymer processing -- 7.3 Process simulation of hot embossing -- 7.3.1 Modeling of microstructured parts -- 7.3.2 Modeling of process steps -- 7.3.3 Modeling of material behavior -- 7.3.3.1 Shear thinning material model for the flow behavior. , 7.3.3.2 Material model for the demolding behavior -- 7.3.3.3 Material strength during demolding -- 7.3.3.4 Friction between mold and polymer -- 7.4 Process analysis -- 7.4.1 The process step of heating -- 7.4.2 The process step of embossing -- 7.4.2.1 Squeeze flow behavior -- 7.4.2.2 Characteristic pressure distribution -- 7.4.2.3 Thickness of the residual layer -- 7.4.2.4 Filling of microcavities-pressure drop estimation -- 7.4.2.5 Filling of microcavities-flow analysis -- 7.4.3 The process step of cooling -- 7.4.4 The process step of demolding -- 7.4.4.1 Contact stress -- 7.4.4.1.1 Contact stress under the impact of dwell pressure -- 7.4.4.1.2 Contact stress at the beginning of demolding -- 7.4.4.2 Stress distribution during demolding of structures -- 7.4.4.2.1 Demolding of ideal, vertical structures -- 7.4.4.2.2 Demolding of structures with undercuts -- References -- 8 Fundamentals of polymers -- 8.1 Molecular architecture -- 8.1.1 Polymer synthesis -- 8.1.2 Primary bonds -- 8.1.3 Secondary bonds -- 8.1.4 Morphology -- 8.2 Thermal states of thermoplastic polymers -- 8.2.1 Thermal behavior of amorphous polymers -- 8.2.2 Thermal behavior of semicrystalline polymers -- 8.2.3 Thermal molding windows -- 8.3 Polymer melts -- 8.3.1 Shear rheologic behavior -- 8.3.1.1 Stationary flow -- 8.3.1.2 Shear viscosity-shear thinning -- 8.3.1.3 Modeling of viscous flow -- 8.3.1.4 Temperature shift function -- 8.3.1.4.1 Arrhenius approach -- 8.3.1.4.2 WLF approach -- 8.3.2 Flow in capillaries -- 8.3.2.1 Newtonian fluid -- 8.3.2.2 Shear thinning fluid -- 8.3.3 Viscoelastic behavior of polymer melts -- 8.3.3.1 Definition of viscoelasticity -- 8.3.3.2 Mechanical models-Maxwell model -- 8.3.4 Measurement of viscosity -- 8.3.5 Strain-rheologic behavior -- 8.4 Molecular orientation and relaxation -- 8.4.1 Molecular orientation -- 8.4.2 Relaxation and retardation. , 8.4.3 Mathematical characterization of relaxation and retardation -- 8.5 Solidification -- 8.5.1 Amorphous and semicrystalline structures -- 8.5.2 p-v-T diagram -- 8.6 Solid polymers -- 8.6.1 Linear viscoelasticity in the solid state -- 8.6.2 Creeping and relaxation -- 8.6.3 Mechanical properties -- 8.6.3.1 Tensile experiments -- 8.6.3.2 Strength of polymer material during demolding -- 8.6.3.3 Dynamic mechanical analysis-DMA -- 8.7 Friction -- 8.7.1 Friction between mold and polymer -- 8.7.2 Measurement of friction between mold and polymer -- 8.7.3 Static and dynamic friction force during demolding -- 8.8 Thermal properties of polymers -- 8.8.1 Thermal material data -- 8.8.1.1 Density -- 8.8.1.2 Heat capacity -- 8.8.1.3 Heat conduction -- 8.8.1.4 Thermal diffusivity -- 8.8.2 Measurement of calorimetric properties -- 8.8.2.1 Differential thermal analysis (DTA) -- 8.8.2.2 Differential scanning calorimetry (DSC) -- References -- 9 Polymer materials for hot embossing -- 9.1 Classification of polymer materials -- 9.2 Thermoplastic polymers -- 9.2.1 Standard polymers -- 9.2.1.1 Polyethylene -- 9.2.1.2 Polypropylene -- 9.2.1.3 Polystyrene -- 9.2.1.4 Polyvinyl chloride -- 9.2.2 Technical polymers -- 9.2.2.1 Poly (methyl methacrylate) (PMMA) -- 9.2.2.2 Polycarbonate-PC -- 9.2.3 High performance polymers -- 9.2.3.1 Polysulfones (PSU) -- 9.2.3.2 Polyetheretherketone-PEEK -- 9.2.4 Co-polymers -- 9.2.4.1 Cyclic olefin copolymer-COC -- 9.2.4.2 Acrylonitrile butadiene styrene-ABS -- 9.3 Polymer blends -- 9.3.1 Blend classification -- 9.3.2 Thermoplastic elastomers-TPE -- 9.4 Polymer composites -- 9.4.1 Filled polymers -- 9.4.2 Nano composites -- 9.4.3 Fiber reinforced polymers -- 9.5 Bio plastics -- 9.5.1 Biopolymers and bioplastics -- 9.5.2 Petrochemical-based bioplastics -- 9.5.2.1 Polyvinyl alcohol (PVAL) -- 9.5.2.2 Polycaprolactone (PCL). , 9.5.3 Bio-based raw materials.
    Weitere Ausg.: Print version: Worgull, Matthias Hot Embossing San Diego : Elsevier,c2024 ISBN 9780128211939
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780128211038?
Meinten Sie 9780128217993?
Meinten Sie 9780128211649?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz