UID:
almahu_9949983992702882
Format:
1 online resource (642 pages)
ISBN:
9780128215524
,
0128215526
Series Statement:
Woodhead Publishing series in electronic and optical materials
Content:
"Organic Ferroelectric Materials and Applications aims to bring an up-to date account of the field with discussion of recent findings. This book presents an interdisciplinary resource for scientists from both academia and industry on the science and applications of molecular organic piezo- and ferroelectric materials. The book addresses the fundamental science of ferroelectric polymers, molecular crystals, supramolecular networks, and other key and emerging organic materials systems. It touches on important processing and characterization methods and provides an overview of current and emerging applications of organic piezoelectrics and ferroelectrics for electronics, sensors, energy harvesting, and biomedical technologies."--
Note:
Intro -- Organic Ferroelectric Materials and Applications -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Introduction -- 1.1. Piezoelectric phenomena -- 1.2. Pyroelectric phenomena -- 1.3. Ferroelectric phenomena -- 1.4. Conclusion -- References -- Chapter 2: Ferroelectric charge-transfer complexes -- 2.1. Introduction -- 2.2. Background -- 2.2.1. Valence instability -- 2.2.2. Lattice instability -- 2.2.3. Experimental probes of ionicity -- 2.2.4. Experimental probes for lattice deformation -- 2.3. Spin-Peierls transition system -- 2.3.1. Tetrathiafulvalene-p-bromanil -- 2.3.2. Other ionic CT complexes -- 2.4. Neutral-ionic transition (NIT) system -- 2.4.1. Tetrathiafulvalene-p-chloranil family -- 2.4.1.1. Temperature-induced NIT -- 2.4.1.2. Ferroelectric properties -- 2.4.1.3. Theoretical evaluation of polarizations -- 2.4.1.4. Structural evaluations -- 2.4.1.5. Dielectric properties -- 2.4.1.6. Soft mode -- 2.4.1.7. Domain-wall excitations and transport -- 2.4.2. Impurity doping and one-dimensional relaxor -- 2.4.3. Quantum ferroelectricity -- 2.4.3.1. Quantum phase transition -- 2.4.3.2. TTF-QI4 family -- 2.4.3.3. TTF-QBr2I2 under hydrostatic pressure -- 2.4.4. Other NIT systems provision -- 2.4.4.1. TMB-TCNQ -- 2.4.4.2. Antiferroelectric DMTTF-QCl4 family -- 2.4.4.3. p-Phenylenediamine complexes -- 2.4.4.4. BEDT-TTF-ClMeTCNQ -- 2.4.4.5. TTC1-TTF complexes -- 2.4.5. Effective clues for developing NIT ferroelectrics -- 2.5. Miscellaneous approach to ferroelectric CT complexes -- 2.5.1. Bending deformation -- 2.5.1.1. Dimethyldihydrophenazine system -- 2.5.1.2. Phenothiazine system -- 2.5.2. Molecular-disk rotation -- 2.5.3. Electronic ferroelectricity in CT salts -- 2.5.3.1. One-dimensional system: (TMTTF)2X -- 2.5.3.2. Two-dimensional system: (BEDT-TTF)2X -- 2.5.4. Other dielectric CT complexes -- 2.6. Summary and outlook.
,
Acknowledgment -- References -- Chapter 3: Hydrogen-bonded organic molecular ferroelectrics/antiferroelectrics -- 3.1. Introduction -- 3.2. Prototropic ferroelectrics -- 3.2.1. Development of dielectrics at the early stage -- 3.2.2. Structural assessments with the aid of a database -- 3.2.3. Materials and microscopic mechanisms -- 3.2.4. Macroscopic properties -- 3.2.5. Quantum theory and simulations -- 3.2.6. Structure-property relationship -- 3.3. Proton-transfer-type binary components -- 3.3.1. Supramolecular cocrystals with heteronuclear hydrogen bonds -- 3.3.1.1. Overview -- 3.3.1.2. Neutral supramolecules -- 3.3.1.3. Ionic supramolecules -- 3.3.2. Proton-transfer salts with homonuclear hydrogen bonds -- 3.3.2.1. Organic ammonium salts -- 3.3.2.2. Supramolecules with a proton sponge -- 3.3.3. Zwitterions -- 3.3.4. Variations of the hydrogen-bonded ferroelectrics -- 3.4. Proton-transfer-type antiferroelectrics -- 3.4.1. Antiferroelectricity -- 3.4.2. Squaric acid -- 3.4.3. Electrostatic energy storage -- 3.4.4. Giant electrostriction -- 3.4.5. Metaelectric transitions other than antiferroelectricity -- 3.5. Domain structures -- 3.6. Summary and outlook -- Acknowledgement -- References -- Chapter 4: Synthesis of polyvinylidene fluoride and its copolymers -- 4.1. Fluorinated polymers -- 4.2. Poly(vinylidene fluoride) -- 4.3. Homopolymerization of PVDF -- 4.4. Vinylidene fluoride-based copolymers -- 4.5. Well-defined copolymers containing PVDF -- 4.6. Free radical polymerization -- 4.7. Polycondensation -- 4.8. Controlled radical polymerization -- 4.9. Atom transfer radical polymerization (ATRP) -- 4.10. Reversible addition-fragmentation chain transfer polymerization (RAFT)/macromolecular design via reversible additio ... -- 4.11. Iodine transfer polymerization -- 4.12. Click chemistry -- 4.13. Grafting -- 4.14. Applications -- 4.15. Conclusion.
,
References -- Chapter 5: Ferroelectric polymer blends for optoelectronic applications -- 5.1. Introduction -- 5.2. Thermodynamic preliminaries -- 5.3. Ferroelectric polymer blends: Morphologies, phase separations, and ferroelectric polarization behaviors -- 5.3.1. Blends with dielectric polymers -- 5.3.2. Blends with semiconductors -- 5.3.3. Blends with ionic liquids (ILs) -- 5.4. Optoelectronic applications with ferroelectric polymer blends -- 5.4.1. Nonvolatile memories -- 5.4.2. Capacitive energy storage -- 5.4.3. Solar cells with built-in electric fields -- 5.5. Self-assembled ferroelectric block copolymers -- 5.6. Concluding remarks -- Acknowledgments -- References -- Chapter 6: Nylons -- 6.1. Introduction -- 6.2. Ferroelectricity in the crystalline phase of nylons -- 6.2.1. Polymorphism and mesophase structure in odd- and even-numbered n-nylons -- 6.2.2. Ferroelectricity in odd- and even-numbered n-nylons -- 6.2.2.1. Ferroelectricity in nylon-12 -- 6.2.2.2. Ferroelectricity in nylon-6 -- 6.2.2.3. Ferroelectricity in nylon-11 -- 6.2.2.4. Comparison of ferroelectricity for mesomorphic even- and odd-numbered nylon films -- 6.3. Ferroelectricity in amorphous phases of nylons -- 6.3.1. Ferroelectric behavior for the amorphous phases in aliphatic n-nylons -- 6.3.2. Ferroelectric behavior in amorphous aromatic nylons -- 6.4. Novel ferroelectric nylons: SHL and DHL -- 6.4.1. Narrow double hysteresis loop (DHL) from even-numbered nylons -- 6.4.2. Narrow single hysteresis loop from nylon terpolymers -- 6.4.3. Discussion of ferroelectric behaviors in PVDF- and nylon-based polymers -- 6.5. Summary and outlook -- References -- Chapter 7: Switching dynamics in organic ferroelectrics -- 7.1. Introduction -- 7.2. Dipole switching in organic ferroelectric materials -- 7.2.1. Polymers -- 7.2.2. Liquid crystals -- 7.2.3. Crystals -- 7.3. Analytical models.
,
7.3.1. Nucleation: KAI -- 7.3.2. Merz law -- 7.3.3. TA-NLS -- 7.3.4. Thermally activated Merz -- 7.3.5. Dispersive switching -- 7.3.5.1. Nucleation limited switching -- 7.3.5.2. Inhomogeneous field mechanism -- 7.3.5.3. Preisach model -- Introduction -- The physical basis of the Preisach model -- Applications of the Preisach model -- 7.4. Monte Carlo models -- 7.4.1. Introduction -- 7.4.2. Monte Carlo simulations on ferroelectrics -- 7.4.3. Kinetic Monte Carlo simulations on PVDF -- 7.4.4. Kinetic Monte Carlo simulations on BTA -- 7.4.4.1. Retention -- 7.4.4.2. Hysteresis loops -- 7.4.4.3. The effect of disorder -- 7.4.4.4. Switching transients -- 7.5. Molecular dynamics -- 7.5.1. MD on ferroelectrics -- 7.5.2. MD on PVDF -- 7.5.3. MD on BTA -- 7.6. First-principle theory -- 7.6.1. Density functional theory -- 7.6.2. DFT on PVDF -- 7.6.3. DFT on BTA -- 7.7. Conclusion and outlook -- References -- Chapter 8: Piezoresponse force microscopy for functional imaging of organic ferroelectrics -- 8.1. Introduction -- 8.2. Principles of piezoresponse force microscopy -- 8.3. Challenges of PFM characterization in organic ferroelectrics -- 8.4. Application of PFM technique to organic ferroelectrics -- 8.4.1. Domain imaging and polarization switching in ferroelectric polymers -- 8.4.2. Domain imaging in simple molecular ferroelectrics -- 8.4.2.1. Order-disorder and displacive systems -- 8.4.2.2. Hydrogen-bonded proton-transfer systems -- 8.4.3. Probing hybrid organic-inorganic perovskites by PFM -- 8.4.4. Application of PFM to biomaterials -- 8.5. Conclusion and outlook -- References -- Chapter 9: Dielectric spectroscopy of ferroelectric polymers -- 9.1. Introduction -- 9.2. Methodological aspects -- 9.2.1. Measurement technique -- 9.3. The effect of crystal and supramolecular structure of the ferroelectric polymers on their dielectric properties.
,
9.4. Dielectric properties of textured ferroelectric films -- 9.5. Peculiarities of dielectric relaxation in ultrathin films -- 9.6. Space charge relaxation and phase transitions in heterogeneous ferroelectric polymers -- References -- Chapter 10: Liquid structuring in fluoropolymer solutions induced by water -- 10.1. Introduction -- 10.2. Some theoretical ingredients -- 10.2.1. Flory-Huggins theory -- 10.2.2. Multicomponent liquid-vapor exchange -- 10.3. Water vapor-induced demixing in fluoropolymer films -- 10.4. Controlled LLPS in electrospun fluoropolymer fibers -- 10.5. Conclusions -- References -- Chapter 11: Solution processing of piezoelectric unconventional structures -- 11.1. Introduction -- 11.2. Processing and applications of unconventional structures -- 11.2.1. Membranes -- 11.2.1.1. Thermally induced phase separation -- 11.2.1.2. Nonsolvent-induced phase separation -- 11.2.1.3. Vapor-induced phase separation -- 11.2.1.4. Porogen leaching -- 11.2.2. Fibers -- 11.2.2.1. Electrospinning -- 11.2.2.2. Melt electrowriting -- 11.2.3. Microspheres and microparticles -- 11.2.3.1. Emulsification solvent extraction/evaporation -- 11.2.3.2. Spray drying -- 11.2.3.3. Electrospray -- 11.2.3.4. Microfluidics -- 11.2.4. Patterning -- 11.2.4.1. Template patterning -- 11.2.4.2. Anodic aluminum oxide templates -- 11.2.5. Printed technologies -- 11.2.5.1. Printable piezoelectric materials -- 11.2.5.2. 2D printing of piezoelectric materials -- 11.2.5.3. 3D printing of piezoelectric materials -- 11.2.5.4. State-of-art of printed piezoelectric devices -- 11.3. Final remarks and future trends -- Acknowledgment -- References -- Chapter 12: Polarization of ferroelectric polymers through electrolytes -- 12.1. Introduction -- 12.2. Ferroelectric/electrolyte interface: The basic concept -- 12.3. Applications -- 12.3.1. Passive addressing of electrochromic displays.
,
12.3.2. Nonlinearity in organic electrolyte-gated transistors.
Additional Edition:
ISBN 9780128215517
Additional Edition:
ISBN 0128215518
Language:
English
Bookmarklink