UID:
almahu_9949984665002882
Umfang:
1 online resource (669 pages)
ISBN:
9780128215937
,
0128215933
Serie:
Solar Cell Engineering
Inhalt:
"Sustainable Material Solutions for Solar Energy Technologies: Processing Techniques and Applications provides an overview of challenges that must be addressed to efficiently utilize solar energy. The book explores novel materials and device architectures that have been developed to optimize energy conversion efficiencies and minimize environmental impacts. Advances in technologies for harnessing solar energy are extensively discussed, with topics including materials processing, device fabrication, sustainability of materials and manufacturing, and current state-of-the-art. Leading international experts discuss the applications, challenges, and future prospects of research in this increasingly vital field, providing a valuable resource for students and researchers working in this field. Explores the fundamentals of sustainable materials for solar energy applications, with in-depth discussions of the most promising material solutions for solar energy technologies: photocatalysis, photovoltaic, hydrogen production, harvesting and storage. Discusses the environmental challenges to be overcome and importance of efficient materials utilization for clean energy. Looks at design materials processing and optimization of device fabrication via metrics such as power-to-weight ratio, effectiveness at EOL compared to BOL, and life-cycle analysis"--
Anmerkung:
Front Cover -- Sustainable Material Solutions for Solar Energy Technologies -- Copyright Page -- Contents -- List of contributors -- Preface -- I. Trends in Materials Development for Solar Energy Applications -- 1 Bismuth-based nanomaterials for energy applications -- 1.1 Introduction -- 1.2 Photovoltaics -- 1.2.1 Solar Cell Operation -- 1.2.2 Nanoengineering -- 1.2.3 Bismuth-Based Nanomaterials -- 1.2.3.1 Bismuth-based Perovskites and Bismuth Halides -- 1.2.3.2 Bismuth Chalcogenides -- 1.2.4 Summary -- 1.3 Thermoelectric devices -- 1.3.1 Thermoelectric Devices Operation -- 1.3.2 Nanoengineering -- 1.3.3 Bi-Based Nanomaterials -- 1.3.3.1 Metallic bismuth -- 1.3.3.2 Bi2Te3 and (Bi,Sb)2(Te,Se)3 alloys -- 1.3.3.3 Bi2Se3 and Bi2S3 -- 1.3.3.4 Ternary materials -- 1.3.4 Summary -- 1.4 Batteries & -- Supercapacitors -- 1.4.1 Battery Operation -- 1.4.2 Supercapacitor Operation -- 1.4.3 Bismuth-Based Electrodes -- 1.4.4 Nanoengineering -- 1.4.5 Coating or Mixing with Conductive Materials -- 1.4.6 Bismuth Perovskite Supercapacitors -- 1.4.7 Summary -- 1.5 Solar-hydrogen production -- 1.5.1 Fundamentals of photocatalysis for hydrogen production -- 1.5.2 Nanoengineering -- 1.5.3 Bi-based nanomaterials -- 1.5.3.1 Bismuth chalcogenides Bi2E3 (E = S, Se, Te) -- 1.5.3.2 Ternary Bismuth Chalcogenides (I-Bi-VI2) -- 1.5.3.3 Bismuth-based composite oxides -- 1.5.3.3.1 Bismuth oxides -- 1.5.3.3.2 Bismuth Oxyhalides BiOX (X= Cl, Br, I) -- 1.5.3.3.3 BiMO4 (M = P, V, Nb and Ta) -- 1.5.3.3.4 Aurivillius oxides Bi2MO6 (M = Cr, Mo and W) -- 1.5.4 Summary -- 1.6 Conclusions -- Acknowledgements -- References -- 2 Emergent materials and concepts for solar cell applications -- 2.1 Introduction -- 2.2 Perovskite solar cells -- 2.2.1 Historical review -- 2.2.2 Solar cells -- 2.2.3 Stability -- 2.2.4 Scaling up and possibilities for commercialization.
,
2.3 III-V semiconductor materials for multijunction solar cells applications -- 2.3.1 Historical review -- 2.3.2 Some basics of multijunction solar cells -- 2.3.3 III-V materials for photovoltaic applications -- 2.3.4 Selected examples -- 2.3.4.1 Bonded lattice matched structures -- 2.3.4.2 Inverted metamorphic lattice mismatched structures -- 2.3.5 Discussion -- 2.4 Final remarks and future perspectives -- References -- 3 Novel dielectrics compounds grown by atomic layer deposition as sustainable materials for chalcogenides thin-films photov... -- 3.1 Introduction -- 3.2 Atomic layer deposition technique -- 3.2.1 Requirements for ideal precursors and atomic layer deposition signature quality -- 3.2.2 Commercial and research tools -- 3.3 Atomic layer deposition applied on chalcogenides thin films technologies -- 3.3.1 Absorber layers: Cu(In,Ga)Se2, Cu2ZnSnS4, and Cu2ZnSn(S,Se)4 -- 3.3.1.1 Chalcopyrite thin films: mature level -- 3.3.1.2 Kesterite thin films: under development level -- 3.3.2 Sustainable buffer layers based on atomic layer deposition -- 3.3.3 Sustainable passivation layers based on atomic layer deposition -- 3.4 Final remarks -- Acknowledgments -- References -- 4 First principles methods for solar energy harvesting materials -- 4.1 Introduction -- 4.2 Fundamental concepts -- 4.2.1 Crystalline representation -- 4.2.2 The multielectron system -- 4.2.3 The variational principle -- 4.2.4 The universal functional of the density -- 4.2.5 The auxiliary Kohn-Sham system -- 4.3 Selected materials with solar energy harvesting implementations -- 4.3.1 The input file -- 4.3.2 A supercell of zinc oxide -- 4.3.3 Structural stability of FAPbI3 perovskites -- 4.3.4 Charge order and half metallicity of Fe3O4 -- 4.3.5 Optimization of anatase titanium dioxide -- 4.3.6 A conventional and a reduced representation of mBiVO4.
,
4.3.7 A template structure for chalcopyrite -- 4.4 Conclusion -- References -- II. Sustainable Materials for Photovoltaics -- 5 Introduction to photovoltaics and alternative materials for silicon in photovoltaic energy conversion -- 5.1 Introduction -- 5.2 Current status of photovoltaics -- 5.3 Fundamental properties of photovoltaics semiconductors -- 5.3.1 Crystal structure of semiconductors -- 5.3.2 Energy band structure -- 5.3.3 Density of energy states -- 5.3.4 Drift-motion due to the electric field -- 5.3.4.1 Drift velocity -- 5.3.4.2 Mobility of carriers -- 5.3.4.3 The resistivity of charge carriers -- 5.3.5 Diffusion-due to a concentration gradient -- 5.3.6 Absorption coefficient -- 5.4 Physics of solar cell -- 5.4.1 Homojunction and heterojunction structure -- 5.4.2 p-n junction under illumination -- 5.4.3 I-V equations of solar cell -- 5.4.3.1 Short circuit current Isc -- 5.4.3.2 Open circuit voltage Voc -- 5.4.3.3 Fill factor -- 5.4.3.4 Efficiency -- 5.5 Categories of the photovoltaic market -- 5.6 Commercialization of Si solar cells -- 5.7 Status of alternative photovoltaics materials -- 5.8 Thin film technology -- 5.9 Material selection in thin film technology -- 5.10 Thin film deposition techniques -- 5.10.1 Physical deposition -- 5.10.1.1 Evaporation techniques -- 5.10.1.1.1 Vacuum thermal evaporation -- 5.10.1.1.2 Electron beam evaporation -- 5.10.1.1.3 Laser beam evaporation/pulsed laser deposition -- 5.10.1.1.4 Arc evaporation -- 5.10.1.1.5 Molecular beam epitaxy -- 5.10.1.2 Sputtering techniques -- 5.10.2 Chemical deposition -- 5.10.2.1 Sol-gel technique -- 5.10.2.2 Chemical bath deposition -- 5.10.2.3 Spray pyrolysis technique -- 5.10.2.4 Chemical vapor deposition -- 5.10.2.4.1 Low pressure and atmospheric pressure chemical vapor deposition -- 5.10.2.4.2 Plasma enhanced chemical vapor deposition.
,
5.10.2.4.3 Hot wire chemical vapor deposition -- 5.10.2.4.4 Ion assisted deposition -- 5.11 Copper indium gallium selenide-based solar cell -- 5.11.1 Alkali metal postdeposition treatment on copper indium gallium selenide based solar cells -- 5.12 Cadmium telluride solar cells -- 5.13 Multijunction solar cells -- 5.14 Emerging solar cell technologies -- 5.14.1 Organic solar cells -- 5.14.2 Dye-sensitized solar cells -- 5.14.3 Perovskite solar cells -- 5.14.4 Quantum dot solar cells -- 5.15 Summary, conclusions, and outlook -- Acknowledgment -- References -- 6 An overview on ferroelectric photovoltaic materials -- 6.1 Overview -- 6.2 Ferroelectric materials -- 6.3 Photovoltaic effect -- 6.3.1 Mechanism of ferroelectric photovoltaic -- 6.3.2 History and current status of ferroelectric photovoltaic -- 6.4 Barium titanate -- 6.4.1 Crystal structure -- 6.4.2 Dielectric properties -- 6.4.3 Ferroelectric phenomena in BaTiO3 -- 6.4.4 Optical properties -- 6.4.5 Various techniques of depositing BaTiO3 thin film -- 6.4.6 Potential applications of BaTiO3 -- 6.5 Bismuth ferrite -- 6.6 Conclusion -- Acknowledgments -- References -- 7 Nanostructured materials for high efficiency solar cells -- 7.1 Introduction -- 7.2 Nanostructures and quantum mechanics -- 7.3 Quantum wells in solar cells -- 7.4 Quantum wires (nanowires) in solar cells -- 7.5 Quantum dots in solar cells -- 7.5.1 InAs quantum dots on GaAs -- 7.5.2 In(Ga)As or InAsP quantum dots on wide bandgap material barriers -- 7.6 Conclusions -- Acknowledgments -- References -- 8 Crystalline-silicon heterojunction solar cells with graphene incorporation -- 8.1 Heterojunction solar cells and graphene -- 8.1.1 Heterojunction solar cells -- 8.1.2 Graphene -- 8.2 Fabrication of silicon heterojunction solar cell -- 8.2.1 Surface patterning and surface cleaning -- 8.2.2 Deposition of a-silicon:H layers.
,
8.2.3 Deposition of transparent conductive oxide -- 8.2.4 Metallization -- 8.2.5 Thermal treatment -- 8.3 Synthesis of graphene -- 8.3.1 Incorporating graphene into silicon heterojunction solar cells -- 8.4 Conclusion -- Acknowledgment -- References -- 9 Tin halide perovskites for efficient lead-free solar cells -- 9.1 Introduction -- 9.2 Halide perovskite solar cells: why tin? -- 9.2.1 Perovskite structure -- 9.2.2 Carrier transport and tin halide perovskite defects -- 9.2.3 Tin perovskite bandgap -- 9.2.4 Tin oxidation -- 9.2.5 Tin toxicity -- 9.3 ASnX3: a brief historical excursus -- 9.4 Toward efficient and stable ASnX3 PSCs -- 9.4.1 Additives -- 9.4.1.1 Tin containing additives: SnX2 and Sn -- 9.4.1.2 Reducing agents -- 9.4.2 Passivation -- 9.4.3 Low dimensional perovskites -- 9.4.4 Solvent -- 9.5 Conclusion -- References -- III. Sustainable Materials for Photocatalysis and Water Splitting -- 10 Photocatalysis using bismuth-based heterostructured nanomaterials for visible light harvesting -- 10.1 Introduction -- 10.2 Fundamentals of heterogeneous photocatalysis -- 10.2.1 Heterogeneous photocatalysis applied to environmental engineering processes -- 10.2.2 Factors affecting the photocatalytic process -- 10.2.2.1 Physical properties -- 10.2.2.2 (Photo)electrochemical properties -- 10.2.2.3 The matrix composition -- 10.2.3 Insights of physicochemical characterization of nanophotocatalysts -- 10.3 Bismuth-based heterostructures for photocatalytic applications -- 10.3.1 Semiconductor-semiconductor heterostructures using bismuth-based materials -- 10.3.2 General strategies for synthesis of bismuth-based semiconductors -- 10.3.2.1 Sol-gel synthesis -- 10.3.2.2 Hydrothermal/solvo thermal synthesis -- 10.3.2.3 Ball milling process -- 10.3.2.4 Sputtering process -- 10.3.3 Applications of bismuth-based heterostructures -- 10.3.3.1 Water treatment.
,
10.3.3.2 Self-cleaning.
Weitere Ausg.:
ISBN 9780128215920
Weitere Ausg.:
ISBN 0128215925
Sprache:
Englisch
Bookmarklink