Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
  • 1
    Online Resource
    Online Resource
    Cambridge, Massachusetts ; : Woodhead Publishing,
    UID:
    almahu_9949697905302882
    Format: 1 online resource (522 pages)
    ISBN: 0-12-821868-1
    Series Statement: Woodhead Publishing Series in Biomaterials
    Content: "Biomaterials for Angiogenesis and Vasculogenesis covers the application of materials designed to encourage new blood vessel formation. Angiogenesis and vasculogenesis play an important role in tissue engineering and regenerative medicine research by promoting vascular networks inside engineered tissues and thereby increasing tissue healing and regeneration. However, researchers are faced with the challenge of finding suitable materials for improving angiogenesis and vascular formation in assays. This book reviews a broad range of biomaterials for the promotion of blood vessel genesis, from polymers and bioactive glass, to nanomaterial scaffolds and 3D angiogenic constructs. In addition, the book covers a variety of applications for biomaterials in tissue repair and regeneration, including cardiovascular regeneration, liver tissue engineering and much more."--
    Note: Front cover -- Half title -- Title -- Copyright -- Contents -- Contributors -- Foreword -- Reference -- Preface -- Chapter 1 Angiogenesis and vasculogenesis: Status in tissue engineering -- 1.1 Tissue engineering: From repair toward regeneration -- 1.2 Importance of vasculogenesis and angiogenesis in tissue engineering -- 1.3 Biomaterials for improved angiogenesis -- 1.4 Bioactive molecules and stem cells for promoted angiogenesis -- 1.5 Therapeutic angiogenesis: Concepts for clinical practices -- References -- Chapter 2 Molecular mediators of vasculogenesis and angiogenesis -- 2.1 Introduction -- 2.2 Overview of the vasculogenesis, angiogenesis, and arteriogenesis -- 2.2.1 Vasculogenesis -- 2.2.2 Angiogenesis -- 2.2.3 Arteriogenesis -- 2.3 The process of angiogenesis -- 2.3.1 Sprouting or intussusception -- 2.3.2 Lumen formation and tubulogenesis -- 2.3.3 Inosculation -- 2.4 Proangiogenic growth factors and cytokines -- 2.4.1 Vascular endothelial growth factor -- 2.4.2 Fibroblast growth factor -- 2.4.3 Tumor necrosis factor-alpha -- 2.4.4 Transforming growth factor-beta (TGFb) -- 2.4.5 Matrix metalloproteinase (MMP) -- 2.4.6 Angiopoietins and Tie receptors -- 2.4.7 Integrin -- 2.5 Inhibitors of angiogenesis -- 2.5.1 Thrombospondin -- 2.5.2 Endostatin -- 2.5.3 Troponin -- 2.5.4 Inhibitors of VEGF and Tie receptors -- 2.5.5 Metalloproteinase inhibitors -- 2.6 Maturation of angiogenesis -- 2.7 Conclusion -- References -- Chapter 3 The role of cells in vascular network formation and angiogenesis induction -- 3.1 Introduction -- 3.2 Human vascular system: An overview -- 3.3 Basic structure of vessels -- 3.4 Cellular crosstalk during vasculogenesis and angiogenesis -- 3.5 Immune cells and angiogenesis -- 3.6 Stem/progenitors cells for improved angiogenesis -- 3.7 Summary and concluding remarks -- References. , Chapter 4 The importance of extracellular matrix (ECM) in vasculogenesis and angiogenesis -- 4.1 Introduction -- 4.2 ECM-cell communication -- 4.3 ECM: A reservoir for growth factors and matricellular proteins -- 4.4 Effect of ECM components on angiogenesis -- 4.5 Proangiogenic components of ECM -- 4.5.1 Fibronectin -- 4.5.2 Laminins -- 4.5.3 Collagens -- 4.5.4 Proteoglycans -- 4.5.5 Hyaluronan -- 4.5.6 The EDEN family -- 4.5.7 The CCN family -- 4.6 Antiangiogenic components of the ECM -- 4.7 ECM remodeling and angiogenesis -- Conclusion -- References -- Chapter 5 Role of growth factors and cytokines in therapeutic angiogenesis -- 5.1 Introduction -- 5.2 Proangiogenic GFs -- 5.2.1 Vascular endothelial growth factor -- 5.2.2 Basic fibroblast growth factor (bFGF) or FGF-2 -- 5.2.3 Platelet-derived growth factor -- 5.2.4 Angiopoietins (Ang) -- 5.3 Angiogenic cytokines -- 5.3.1 Transforming growth factor beta -- 5.3.2 Stromal cell derived factor-1 -- 5.3.3 Tumor necrosis factor-alpha -- 5.4 Other GFs and cytokines -- 5.5 Summary -- References -- Chapter 6 Interplay between angiogenesis and neurogenesis in nerve regeneration -- 6.1 Introduction -- 6.2 Nerve regeneration in nervous system -- 6.3 Tissue engineering strategies in nerve regeneration -- 6.3.1 Scaffolds for CNS tissue engineering -- 6.3.2 Scaffolds for PNS tissue engineering -- 6.4 Cells for nerve regeneration -- 6.4.1 Embryonic stem cells -- 6.4.2 Mesenchymal stem cells -- 6.4.3 Induced pluripotent stem cells -- 6.4.4 Neural stem cells -- 6.5 Growth factors in nerve regeneration -- 6.6 Angiogenesis in injured nervous system -- 6.6.1 Molecular basis of angiogenesis in injured neural tissue -- 6.6.2 Neurogenic factors -- 6.6.3 Cellular compartment -- 6.7 Conventional nerve grafts -- 6.7.1 Vascularized nerve grafts -- 6.7.2 Vascularized grafts by vascular implantation. , 6.7.3 Blood vessel-including tubulation -- 6.7.4 Biogenic vascularized nerve conduits -- 6.8 Conclusion -- References -- Chapter 7 Detection assays for vasculogenesis and angiogenesis -- 7.1 Introduction -- 7.2 In vitro assays -- 7.2.1 Proliferation and apoptosis assays -- 7.2.2 Motility assays -- 7.2.3 Tube/cord formation assays -- 7.2.4 Embryoid body assay -- 7.3 Ex vivo assays -- 7.3.1 Thoracic aorta ring assay -- 7.3.2 Ex vivo retina angiogenesis -- 7.4 In vivo assays -- 7.4.1 Chick chorioallantoic membrane assay -- 7.4.2 Corneal pocket angiogenesis -- 7.4.3 Matrigel plug assay -- 7.4.4 Xenograft -- 7.4.5 The sponge implant assay -- 7.4.6 Zebrafish -- Conclusions and future outlook -- References -- Chapter 8 The effects of medicinal herbs and phytochemicals on angiogenesis and models of wound healing -- 8.1 Introduction -- 8.2 Phytochemicals and herbs in medicine: A brief history -- 8.3 Medicinal herbs for modulating angiogenesis -- 8.3.1 Aloe barbadensis (Xanthorrhoeaceae) -- 8.3.2 Calendula officinalis (Asteraceae) -- 8.3.3 Centella asiatica (Mackinlayaceae) -- 8.3.4 Hippophae rhamnoides (Elaeagnaceae) -- 8.3.5 Panax ginseng (Araliaceae) -- 8.3.6 Pistacia atlantica (Anacardiaceae) -- 8.3.7 Terminalia chebula (Combretaceae) -- 8.3.8 Chinese herbs for improved angiogenesis -- 8.4 Phytochemicals -- 8.4.1 Curcumin -- 8.4.2 Resveratrol -- 8.4.3 Flavonoids -- Conclusions and future outlook -- References -- Chapter 9 Calcium phosphate bioceramics for improved angiogenesis -- 9.1 Introduction -- 9.2 CaPs bioceramics: An overview -- 9.3 Clinical significance of angiogenesis in bone regeneration -- 9.4 CaPs bioceramics for improved angiogenesis -- 9.4.1 Doped CaPs bioceramics for promoted angiogenesis -- 9.4.2 Functionalized CaPs for induced angiogenesis -- 9.5 CaPs bioceramics for delivery of proangiogenic bioactive molecules. , 9.6 Summary and future perspectives -- References -- Chapter 10 Angiogenesis induction by bioactive glasses and glass-ceramics -- 10.1 Introduction -- 10.2 The role of ionic dissolution products from bioactive glasses in angiogenesis -- 10.3 Bioactive glass particles -- 10.4 Bioactive glass scaffolds -- 10.5 Bioactive glass coatings -- 10.6 Bioactive glass fibers -- 10.7 Composite materials incorporating bioactive glasses -- Conclusions -- References -- Chapter 11 Angiogenesis induction by natural and synthetic polymers -- 11.1 Introduction -- 11.2 Angiogenesis -- 11.3 Angiogenic natural and synthetic biomaterials -- 11.3.1 Top-down angiogenesis approach -- 11.3.2 Bottom-up angiogenesis approach -- Conclusions -- References -- Chapter 12 Composites for angiogenesis induction -- 12.1 Introduction -- 12.2 Angiogenesis -- 12.3 Angiogenesis inducers -- 12.4 Role of biomaterials in promoting angiogenesis -- 12.4.1 Proangiogenic strategic approaches by involving biomaterials -- 12.4.2 Composite biomaterials-based strategies for angiogenesis induction -- 12.5 Applications of composite biomaterials for angiogenesis induction -- 12.5.1 Bone tissues -- 12.5.2 Wound healing and skin tissues -- 12.5.3 Muscle tissues -- 12.5.4 Cardiac and vascular tissues -- 12.5.5 Other tissues -- Conclusions -- Acknowledgments -- References -- Chapter 13 Three-dimensional (3D) angiogenic constructs -- 13.1 Introduction -- 13.1.1 Scaffold-based strategies -- 13.1.2 Cell-based angiogenesis strategies -- 13.1.3 Angiogenesis induction strategies based on the implementation of growth factors -- 13.1.4 Biological/chemical compound-based strategies -- 13.1.5 Biofabrication strategies -- 13.2 Micropatterning -- 13.2.1 Photolithography -- 13.2.2 Three-dimensional laser photolithography -- 13.2.3 Soft lithography -- 13.3 Nanofabrication of vascular networks. , 13.3.1 Synthetic and natural made nanofibers -- 13.3.2 Incorporation of bioactive components and biomolecules to induce angiogenesis -- 13.3.3 Angiogenic nanofibrous scaffolds in tissue engineering -- 13.3.4 Electrospinning system -- 13.3.5 Concluding remarks and future perspectives -- 13.4 Constructing vascular structures with sacrificial materials -- 13.4.1 Removing of sacrificial component -- 13.4.2 Sacrificial material networks forming by 3D printing -- References -- Chapter 14 Engineered vascularized tissue organs -- 14.1 Introduction -- 14.2 Microvascular (MVS) and tissue engineered blood vessels (TEBV) -- 14.3 Tissue engineering approaches for vascularized tissue/organs formation -- 14.3.1 Decellularization -- 14.3.2 Electrospinning method -- 14.3.3 3D bioprinting -- 14.4 Cell-based engineering -- 14.4.1 Prevascularization -- 14.4.2 Cell delivery and coculture -- 14.4.3 Angiogenic growth factor-based methods -- 14.5 Clinical translation -- 14.6 Challenges and opportunities -- References -- Chapter 15 Role of organic nanomaterials in angiogenesis -- 15.1 Introduction -- 15.2 Organic NMs -- 15.3 Organic nanomaterials play the role of a delivery vehicle -- 15.4 Advanced delivery systems -- 15.5 Mechanisms of action -- 15.6 Endothelial cell proliferation -- 15.7 Endothelial cell migration -- 15.8 Mural cell recruitment -- 15.9 Conclusions -- References -- Chapter 16 Inorganic nanomaterials for improved angiogenesis -- 16.1 Introduction -- 16.2 Inorganic nanomaterials for improved angiogenesis -- 16.2.1 Monovalent ions -- 16.2.2 Divalent ions -- 16.2.3 Trivalent ions -- 16.2.4 Tetravalent ions -- 16.2.5 Pentavalent ions -- 16.2.6 Polyvalent ions -- 16.3 Summary and future prospects -- References -- Chapter 17 Nanosized carriers for delivery of angiogenic materials -- 17.1 Introduction -- 17.2 Living and nonliving angiogenic materials. , 17.2.1 Growth factors.
    Additional Edition: Print version: Kargozar, Saeid Biomaterials for Vasculogenesis and Angiogenesis San Diego : Elsevier Science & Technology,c2022
    Additional Edition: ISBN 9780128218679
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9780128018675?
Did you mean 9780128118979?
Did you mean 9780128211649?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages