UID:
almahu_9949984266502882
Umfang:
1 online resource (978 pages)
ISBN:
9780128219676
,
012821967X
Anmerkung:
Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- Preface -- Part I - Fundamentals of greener synthesis -- 1 - The Fundamental perspectives of greener synthesis -- 1.1 Introduction -- 1.2 General synthetic methods in green chemistry -- 1.2.1 Ultrasound-assisted nanoparticle synthesis -- 1.2.2 Microwave-assisted nanoparticles synthesis -- 1.2.3 Reactor technology in NP synthesis -- 1.3 Green solvents in synthetic methods -- 1.3.1 Applications of ionic liquids in NPs synthesis -- 1.3.2 Applications of scCO 2 in NPs synthesis -- 1.4 Conclusions -- Acknowledgments -- References -- 2 - The importance of green chemistry metrics -- 2.1 Introduction -- 2.2 Green metrics parameters -- 2.2.1 Organic chemistry metrics -- 2.2.1.1 Atom economy (AE), atom efficiency (AEf) and atom utilization (AU) -- 2.2.1.2 Environmental assessment tool for organic syntheses (EATOS) -- 2.2.1.3 E-Factor -- 2.2.1.4 Carbon efficiency -- 2.2.1.5 Effective mass yield (EMY) -- 2.2.1.6 Reaction mass efficiency (RME) -- 2.2.1.7 Mass intensity (MI) or product mass intensity (PMI) -- 2.2.1.8 Stoichiometric factor -- 2.2.1.9 Solvent and catalyst environmental impact parameter -- 2.2.2 Analytical chemistry metrics -- 2.2.2.1 National environmental methods index (NEMI) -- 2.2.2.2 Analytical eco-scale -- 2.2.2.3 Green certificate -- 2.2.2.4 Green analytical procedure index (GAPI) -- 2.2.2.5 Analytical method volume intensity (AMVI) -- 2.2.3 Industry metrics -- 2.2.3.1 Life cycle assessment (LCA) -- 2.2.3.2 Carbon footprint -- 2.2.3.3 Green aspiration level (GAL) -- 2.3 Final remarks -- References -- 3 - Greener synthesis at different scales -- 3.1 Introduction -- 3.1.1 Motivation and goal of the present chapter -- 3.2 Synthesis at macroscale -- 3.2.1 Organic compounds -- 3.2.2 Polymers.
,
3.2.3 Metal oxides and other systems -- 3.2.4 Organometallic complexes and MOFs -- 3.2.5 Biomaterials -- 3.2.6 Pharmaceuticals -- 3.3 Greener synthesis at nanoscale -- 3.3.1 Different strategies for the greener synthesis of nanomaterials -- 3.3.2 Bacteria in NP synthesis -- 3.3.3 Actinomycetes in NP synthesis -- 3.3.4 Fungi in NP synthesis -- 3.3.5 Algae in NP synthesis -- 3.3.6 Virus-based NP synthesis -- 3.3.7 Synthesis of NPs using plant extracts -- 3.3.8 Factors affecting the synthesis of NPs -- 3.3.9 Mechanism: NPs synthesis using microorganisms -- 3.3.10 Nonbiogenic greener approaches -- 3.3.11 Different NPs synthesized using green processes -- 3.3.12 Nanomaterials, nanocomposites, and hybrids -- 3.4 Possibilities of the synthesis at industrial scale -- 3.4.1 A few scaled up greener syntheses -- 3.5 Summary and final remarks -- References -- 4 - Role of greener syntheses at the nanoscale -- 4.1 Introduction -- 4.2 Green syntheses -- 4.3 Role of green synthesis -- 4.3.1 Metal NPs -- 4.3.2 Nonmetal NPs -- 4.3.3 Noble-metal NPs -- 4.3.4 Metal oxide NPs -- 4.3.5 Nanocomposites -- 4.3.6 Nanohybrids -- 4.4 Possibilities of the synthesis at industrial scale -- 4.5 Conclusion and outlook -- References -- Part II - Greener methods: Physical and chemical methods -- 5 - One-pot synthesis of nanomaterials -- 5.1 Introduction -- 5.2 General applications of nanomaterials -- 5.2.1 Applications of nanomaterials as catalysts -- 5.2.2 Applications of nanomaterials for wastewater treatments -- 5.2.3 Applications of nanomaterials as sensors -- 5.2.4 Applications of nanomaterials for energy storage/production -- 5.2.5 Applications of nanomaterials in health care -- 5.3 General methods for the preparation of nanomaterials -- 5.3.1 One-pot synthesis of nanomaterials -- 5.3.2 One-pot synthesis of NPs.
,
5.3.3 One-pot bio-inspired synthesis of NPs -- 5.3.4 One-pot synthesis of NCs -- 5.3.5 Bioinspired one-pot synthesis of NCs -- 5.3.6 One-pot synthesis of QDs -- 5.3.7 Bioinspired one-pot synthesis of QDs -- 5.3.8 One-pot synthesis of carbon nanotubes -- 5.3.9 Bio-inspired one-pot synthesis of carbon nanotubes -- 5.3.10 One-pot synthesis of nanoflowers -- 5.3.11 Bio-inspired one-pot synthesis of nanoflowers -- 5.4 Conclusion -- References -- 6 - Ultrasound assisted reactions -- 6.1 Introduction -- 6.1.1 Ultrasound in synthetic organic chemistry -- 6.2 Synthesis of heterocyclic compounds -- 6.2.1 Synthesis of pyrazoline derivatives -- 6.2.2 Synthesis of imidazolines -- 6.2.3 Synthesis of benzotriazoles and 1-Acylbenzotriazoles -- 6.2.4 Synthesis of 1,5-benzodiazepinic heterocyclic rings -- 6.2.5 Synthesis of 1,4-dihydropyridines -- 6.2.6 Synthesis of 3,4-dihydropyrimidin-2-(1 H )-ones: KV -- 6.2.7 Synthesis of aminopyrazoles -- 6.2.8 Synthesis of 5,5-disubstituted hydantoins -- 6.2.9 Synthesis of vitamins -- 6.2.10 Synthesis of 2-amino-2-chromenes & -- 2H-chromen-2-ones -- 6.2.11 Synthesis of 1,8-dioxo-octahydroxanthene derivatives -- 6.2.12 Synthesis of 5‑hydroxy-5-trihalomethyl-4,5-dihydroisoxazoles and β-enamino trihalomethyl ketone -- 6.2.13 Synthesis of pyrroles -- 6.2.15 Synthesis of benzo[ b ]furans/nitro benzo[ b ]furans -- 6.3 Condensation reactions -- 6.3.1 Synthesis of β‑hydroxyl ketones -- 6.3.2 Synthesis of ferrocenyl substituted 3-cyanopyridine derivatives -- 6.3.3 Synthesis of imines -- 6.3.4 Synthesis of aryl-hydrazones -- 6.3.5 Synthesis of 1,5-diaryl-1,4-pentadien-3-ones -- 6.3.6 Synthesis of chalconoids -- 6.3.7 Synthesis of β-Aminoketones -- 6.3.8 Synthesis of 2-(Alkylamino)benzoic acids -- 6.3.9 Synthesis of arylmethylenemalononitriles.
,
6.3.10 Synthesis of 2-Amino-4-aryl-3-carbalkoxy-7,7-dimethyl-5,6,7,8-tetrahydrobenzo[ b ] pyran derivatives -- 6.3.11 Synthesis of 4-Oxo-2-thioxohexahydropyrimidines -- 6.3.12 Synthesis of α,α'-bis(SubstitutedBenzylidene) cycloalkanones -- 6.3.13 Synthesis of 1-amidoalkyl-2-naphthols -- 6.3.14 Synthesis of pyrido[2,3- d ]pyrimidine derivatives -- 6.3.15 Synthesis of ketoximes -- 6.4 Addition reactions -- 6.4.1 Synthesis of ferrocenyl substituted 1,5-diketone and cyclic α,β-unsaturated ketones -- 6.4.2 Synthesis of 3,3-di(heteroaryl)indolin-2-one derivatives -- 6.4.3 Additions of furan to masked ortho-benzoquinones -- 6.4.4 Synthesis of β-indolylketones -- 6.4.5 Synthesis of 2,3-epoxyl-1,3-diaryl-1-propanone -- 6.4.6 Synthesis of 2-((1H-indol-3-yl)(aryl)methyl)malononitriles -- 6.5 Substitution reactions -- 6.5.1 Synthesis of oximes -- 6.5.2 Synthesis of 4-alkyl-(aryl)aminobenzaldehydes -- 6.5.3 Synthesis of ferujol -- 6.5.4 Synthesis of arylacetylenes -- 6.5.5 Anchoring of carboxylic acids to merrifield resin -- 6.5.6 Synthesis of trimethylsilyl pseudohalides -- 6.5.7 Synthesis of diaryl ethers -- 6.5.8 Sonochemical reaction of bromothiophenes with chlorotrimethylsilane -- 6.5.9 Nitration of phenols -- 6.5.10 Synthesis of bis(indolyl)methanes -- 6.6 Reductions -- 6.6.1 Synthesis of fluorinated alkanes and cycloalkanes -- 6.6.2 Synthesis of 1α,7α,10αH-guaian-4-11‑dien-3-one and hydrocolorenone -- 6.6.3 Synthesis of arylalkanones -- 6.6.4 Clemmensen-type reduction -- 6.6.5 Reduction of enones -- 6.6.6 Synthesis of histrionicotoxin -- 6.6.7 Hydrogenation of trifluoromethyl ketones -- 6.6.8 Chemo-enantioselective hydrogenations -- 6.6.9 Hydrosilylation of 2-substituted cyclohexanones -- 6.6.10 Indirect electroreduction of benzyl chlorides -- 6.6.11 Asymmetric transfer hydrogenation of ketones.
,
6.7 Photochemical reactions -- 6.7.1 Synthesis and photochemistry of 1-Iodocyclohexene -- 6.7.2 Photochemical reaction of cyclohexanone -- 6.7.3 Photochemical reactions of bromotrichloromethane -- 6.8 Coupling reactions -- 6.8.1 Synthesis of z and e stilbenes -- 6.8.2 Synthesis of propargylamines -- 6.8.3 Suzuki reaction -- 6.8.4 Synthesis of biaryls -- 6.8.5 Synthesis of β-iodoethers -- 6.8.6 Synthesis of α-amino phosphonates -- 6.9 Alkylation and acylation reactions -- 6.9.1 N-alkylation of pyrrole -- 6.9.2 Alkylation of phenylacetonitrile -- 6.9.3 Acylation of 2-methoxynaphthalene -- 6.9.4 C-alkylation of benzyl cyanide -- 6.9.5 Synthesis of δ-chloroesters -- 6.9.6 Synthesis of 2-alkyl-2-alkoxy-1,2-di(furan-2-yl)ethanone -- 6.9.7 Synthesis of dioximes -- 6.9.8 Synthesis of N-alkoxyphthalimides -- 6.10 Polymerisation reactions -- 6.10.1 Synthesis of poly-organosilanes -- 6.10.2 Dimerization of pivalic acid -- 6.10.3 Sonochemical polymerization -- 6.10.4 Synthesis of siloxanes -- 6.11 Oxidation reactions -- 6.11.1 Oxidation of dihydropyrimidinones -- 6.11.2 Synthesis of α-benzoylbenzyl cyanide & -- alkylphenyl ketone -- 6.11.3 Glucose oligomerisation and sucrose oxidation -- 6.11.4 Oxidation of phenols -- 6.11.5 Esterification of bile acids -- 6.11.6 Esterification of palmitic acid -- 6.11.7 Synthesis of isatoic anhydrides -- 6.11.8 Oxidation of alkylarenes -- 6.11.9 Epoxidation of cyclohexene -- 6.12 Miscellaneous -- 6.12.1 Preparation of 1,1-diacetate -- 6.12.2 Preparation of diarylmethanes -- 6.12.3 Preparation of nitroalkenes -- 6.12.4 Regioselective synthesis of ketones -- 6.12.5 Synthesis of substituted coumarins -- 6.12.6 Synthesis of pyrazolo[1,5- a ]pyrimidines -- 6.12.7 Synthesis of sulfonamides -- 6.12.8 Preparation of 1-(benzyloxy)−4-nitrobenzene.
,
6.12.9 Synthesis of spiro[indoline-3,4'-pyrano[2,3- c ]pyrazole] derivatives.
Weitere Ausg.:
ISBN 9780128219386
Weitere Ausg.:
ISBN 0128219386
Sprache:
Englisch
Bookmarklink