Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
  • 1
    Online-Ressource
    Online-Ressource
    Cambridge, Massachusetts ; : Woodhead Publishing,
    UID:
    almahu_9949413656502882
    Umfang: 1 online resource (398 pages)
    ISBN: 0-12-823385-0
    Serie: Unit operations and processing equipment in the food industry
    Inhalt: Emerging Thermal Processes in the Food Industry, a volume in the Unit Operations and Processing Equipment in the Food Industry series, explains the processing operations and equipment necessary for thermal processing, including infrared heating, microwave processing, sonication, UV processing, ohmic heating and dielectric processing. These processes and unit operations are very important in terms of achieving favorable sensory properties and energy usage. Chapters emphasize basic texts relating to experimental, theoretical, computational and/or applications of food engineering principles and relevant processing equipment for emerging thermal unit operations.
    Anmerkung: Front Cover -- Emerging Thermal Processes in the Food Industry -- Emerging Thermal Processes in the Food Industry: Unit Operations and Processing Equipment in the Food Industry -- Copyright -- Contents -- List of contributors -- 1 - Introduction to emerging thermal food processes -- 1.1 Introduction -- 1.2 Infrared heating -- 1.3 Microwave heating -- 1.4 Radiofrequency heating -- 1.5 Ohmic heating -- 1.6 Combination of emerging thermal treatments with conventional processes -- 1.7 Conclusion and future perspective -- Acknowledgments -- References -- One - Infrared processing operations -- 2 - Principles of infrared heating in food processing and preservation -- 2.1 Introduction -- 2.2 Fundamentals of IR heating of foods -- 2.2.1 Classification of IR radiation -- 2.2.2 IR absorption characteristics of foods -- 2.2.3 Common infrared sources for food processing operations -- 2.3 Infrared heating in food processing -- 2.3.1 Infrared blanching -- 2.3.2 Infrared cooking -- 2.3.3 Infrared baking -- 2.3.4 Infrared roasting -- 2.3.5 Application of IR heating in drying -- 2.3.5.1 Infrared and hot-air drying -- 2.3.5.2 Infrared and freeze-drying -- 2.3.5.3 Infrared vacuum drying -- 2.3.5.4 Infrared and microwave drying -- 2.4 IR heating for inactivation of microorganisms -- 2.4.1 Inactivation of pathogenic microorganisms -- 2.4.2 Inactivation of spores -- 2.4.3 Infrared pasteurization -- 2.5 Challenges and recommendations -- References -- 3 - Infrared processing equipment for the food industry -- 3.1 Introduction -- 3.2 Infrared emitters -- 3.3 Infrared processing equipment -- 3.3.1 Infrared thermal processors -- 3.3.2 Infrared blanchers and dryers -- 3.3.3 Infrared peeling -- 3.3.4 Infrared baking -- 3.4 Optimization of infrared processing -- 3.5 Conclusion -- References -- 4 - Applications of infrared processing in the food industry -- 4.1 Introduction. , 4.2 Applications of IR radiations in food processing -- 4.2.1 Infrared pasteurization and sterilization -- 4.2.2 Infrared baking -- 4.2.3 Infrared roasting -- 4.2.4 Infrared drying -- 4.2.5 Infrared blanching -- 4.2.6 Infrared and microorganisms -- 4.2.6.1 DNA < -- cell wall < -- RNA < -- protien -- 4.2.7 Infrared thawing -- 4.2.8 Infrared enzyme inactivation -- 4.3 Quality and sensory changes by IR heating -- 4.4 Conclusion -- References -- Two - Microwave processing operations -- 5 - Principles of microwave heating for the food industry -- 5.1 Introduction -- 5.2 Microwaves -- 5.2.1 Microwave frequency in heating -- 5.2.2 Microwaves and dielectric materials -- 5.2.3 Dielectric properties -- 5.2.4 Microwave heating mechanisms -- 5.2.4.1 Microwave electric field heating -- Ionic conduction -- Dipolar polarization -- 5.2.4.2 Microwave magnetic field heating -- Eddy current loss -- Hysteresis loss -- Magnetic resonance losses -- Residual losses -- 5.2.5 Power loss owing to microwave heating -- 5.2.6 Penetration depth of microwaves -- 5.2.7 The fundamentals of microwave interactions mechanisms at different materials -- 5.2.7.1 Reflection impact -- 5.2.7.2 Heating impact -- 5.2.7.3 Discharge impact -- References -- 6 - Microwave heating equipment for the food industry -- 6.1 Microwave application in different heating processes: mechanisms of heat transfer -- 6.2 Description of industrial equipment using microwaves -- 6.2.1 Discontinuous equipment -- 6.2.2 Continuous equipment -- 6.3 Discontinuous systems -- 6.3.1 Transport phenomena in domestic households -- 6.3.1.1 Electromagnetic field prediction by applying Maxwell's equations -- 6.3.1.2 Modeling microwave food heating -- 6.3.1.3 Flow, energy, and water transport in the air -- 6.3.2 Microwave heating process in tanks -- 6.3.2.1 Mathematical modeling of microwave heating in tanks. , 6.3.3 Fluidized bed dryers -- 6.3.3.1 Mathematical modeling of microwave heating in fluidized systems -- 6.4 Continuous systems -- 6.4.1 Pasteurization of liquids. Prediction of temperature and electromagnetic behavior oriented to microbiology stability -- 6.4.1.1 Equipment-advances on designing and scaling -- 6.4.1.2 Design and optimization of processes and equipment by mathematical modeling -- 6.4.1.3 Microbial and enzymatic inactivation kinetics -- 6.5 Conclusions -- References -- 7 - Application of microwave processing in the food industry -- 7.1 Introduction: transport phenomena during food dehydration -- 7.2 Osmotic dehydration. Mass transfer -- 7.2.1 Mass transfer mechanisms -- 7.2.2 Microscopic mass balances -- 7.2.3 Effective diffusion coefficients -- 7.3 Microwave dehydration. Mass and energy transfer -- 7.3.1 Energy transfer -- 7.3.2 Dielectric properties -- 7.3.2.1 Dependence of the dielectric properties on temperature and humidity -- 7.4 Mathematical modeling of osmotic-microwave process. Food properties -- 7.4.1 Mathematical modeling of osmotic dehydration (DO) -- 7.4.1.1 Empirical modeling -- Azuara's model -- 7.4.1.2 Osmotic-diffusional cellular model (ODCM) -- 7.4.1.3 Diffusional modeling of countercurrent flow (DMCF) -- 7.4.2 Microwave dehydration model with global properties (MWDGP) -- 7.4.2.1 Modeling of the heating stage with mild vaporization -- 7.4.2.2 Modeling the constant temperature stage with intense vaporization -- 7.4.3 Microwave dehydration porous media model (MWDPM) -- 7.4.3.1 Multiphase mass transport in porous media -- 7.4.3.2 Momentum transfer in porous media -- 7.4.3.3 Heat transfer in porous media -- 7.4.3.4 Absorbed microwave energy -- 7.4.3.5 Initial and boundary conditions -- 7.4.4 Combined dehydration modeling (DO-MWD) -- 7.4.4.1 First stage -- 7.4.4.2 Second stage -- 7.5 Numerical solution. , 7.5.1 Cellular osmotic-diffusional model (ODCM) solution for osmotic dehydration -- 7.5.2 Solution of the diffusional model in countercurrent flow (DMCF) for osmotic dehydration -- 7.5.3 Microwave dehydration model solution (MWDGP) -- 7.5.4 Solution the multiphase mass transport in porous media -- 7.6 Validation -- 7.6.1 Validation of the osmotic dehydration models -- 7.6.1.1 Azuara's model -- 7.6.1.2 Validation of osmotic-diffusional cellular model (ODCM) solution for osmotic dehydration -- Application of the osmotic-diffusional cellular model (ODCM) to pear half slices -- Application of the osmotic-diffusional cellular model (ODCM) to kiwi slices -- 7.6.1.3 Validation of the diffusional model in countercurrent flow (DMCF) for osmotic dehydration -- Application of the diffusional model in countercurrent flow (DMCF) to half-pear slices -- Application of the diffusional model in countercurrent flow (DMCF) to kiwi slices -- 7.6.2 Validation of the combined model of osmotic dehydration followed by microwave dehydration -- 7.6.2.1 Application of the osmotic-microwave dehydration model to pear slices -- 7.6.2.2 Application of the osmotic-microwave dehydration model to banana slices -- 7.6.3 Application of the osmotic-microwave dehydration model (porous media) -- 7.6.3.1 Absorbed microwave power -- 7.6.3.2 Temperature, pressure, liquid, and vapor concentration profiles -- 7.6.3.3 Effect of osmodehydration pretreatment -- 7.7 Conclusions -- References -- Three - Ohmic heating operations -- 8 - Principles of Ohmic heating for the food industry -- 8.1 Introduction -- 8.2 History of OH -- 8.3 Principle of OH -- 8.4 Some critical parameters in OH -- 8.4.1 Electrical conductivity -- 8.4.2 Frequency and waveform -- 8.4.3 Product size, heat capacity, and viscosity -- 8.4.4 Current intensity and voltage -- 8.4.5 Heating power and heating rate. , 8.4.6 Energy efficiency -- 8.4.7 Electrodes -- 8.4.8 Filed strength -- 8.5 Advantages and disadvantages of OH -- 8.5.1 Advantages of OH -- 8.5.2 Disadvantages of OH -- 8.6 Commercial applications of OH -- 8.7 Conclusion -- References -- 9 - Ohmic heating equipment for the food industry -- 9.1 Introduction -- 9.2 Components of an Ohmic system -- 9.2.1 Power source -- 9.2.2 Electrodes -- 9.2.3 Heating chamber -- 9.2.4 Process temperature monitoring setup -- 9.3 Batch Ohmic systems -- 9.3.1 Lab-scale units -- 9.4 Continuous systems -- 9.4.1 Fluid jet Ohmic heaters -- 9.4.2 Reactor vessels -- 9.4.3 Tubular heaters -- 9.4.4 Sequential heaters with elbow types -- 9.4.5 Ohmic heating in the kHz range -- 9.5 Conclusion -- References -- 10 - Application of Ohmic heating in the food industry -- 10.1 Introduction -- 10.2 Basic principles and main process parameters -- 10.3 Application of Ohmic heating in food -- 10.3.1 Blanching -- 10.3.2 Pasteurization and sterilization -- 10.3.3 Extraction -- 10.3.4 Drying/dehydration -- 10.3.5 Cooking -- 10.3.6 Ohmic thawing -- 10.3.7 Enzyme and microbial inactivation -- 10.3.8 Effect of Ohmic heating on starch gelatinization -- 10.4 Conclusion -- References -- Four - Radiofrequency (RF) processing operations -- 11 - Principles of radiofrequency processing in the food industry -- 11.1 Introduction -- 11.2 Principles of radiofrequency (RF) processing -- 11.3 Factors affecting RF heating -- 11.4 Effects of RF heating -- 11.4.1 Microbiological aspects -- 11.4.2 Effects of RF heating on quality attributes of food -- 11.4.2.1 Color -- 11.4.2.2 Moisture content and water activity -- 11.4.2.3 Nutritional composition -- 11.4.2.4 Phytochemicals and antioxidant activity -- 11.4.2.5 Texture -- 11.4.2.6 Microstructure -- 11.4.2.7 Enzyme activity -- 11.5 Applications of RF -- 11.6 Advantages and disadvantages of RF processing. , 11.6.1 Advantages of RF processing of foods (Rowley, 2001.
    Weitere Ausg.: Print version: Jafari, Seid Mahdi Emerging Thermal Processes in the Food Industry San Diego : Elsevier Science & Technology,c2022 ISBN 9780128221075
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cambridge, Massachusetts ; : Woodhead Publishing,
    UID:
    edocfu_9960949669502883
    Umfang: 1 online resource (398 pages)
    ISBN: 0-12-823385-0
    Serie: Unit operations and processing equipment in the food industry
    Inhalt: Emerging Thermal Processes in the Food Industry, a volume in the Unit Operations and Processing Equipment in the Food Industry series, explains the processing operations and equipment necessary for thermal processing, including infrared heating, microwave processing, sonication, UV processing, ohmic heating and dielectric processing. These processes and unit operations are very important in terms of achieving favorable sensory properties and energy usage. Chapters emphasize basic texts relating to experimental, theoretical, computational and/or applications of food engineering principles and relevant processing equipment for emerging thermal unit operations.
    Anmerkung: Front Cover -- Emerging Thermal Processes in the Food Industry -- Emerging Thermal Processes in the Food Industry: Unit Operations and Processing Equipment in the Food Industry -- Copyright -- Contents -- List of contributors -- 1 - Introduction to emerging thermal food processes -- 1.1 Introduction -- 1.2 Infrared heating -- 1.3 Microwave heating -- 1.4 Radiofrequency heating -- 1.5 Ohmic heating -- 1.6 Combination of emerging thermal treatments with conventional processes -- 1.7 Conclusion and future perspective -- Acknowledgments -- References -- One - Infrared processing operations -- 2 - Principles of infrared heating in food processing and preservation -- 2.1 Introduction -- 2.2 Fundamentals of IR heating of foods -- 2.2.1 Classification of IR radiation -- 2.2.2 IR absorption characteristics of foods -- 2.2.3 Common infrared sources for food processing operations -- 2.3 Infrared heating in food processing -- 2.3.1 Infrared blanching -- 2.3.2 Infrared cooking -- 2.3.3 Infrared baking -- 2.3.4 Infrared roasting -- 2.3.5 Application of IR heating in drying -- 2.3.5.1 Infrared and hot-air drying -- 2.3.5.2 Infrared and freeze-drying -- 2.3.5.3 Infrared vacuum drying -- 2.3.5.4 Infrared and microwave drying -- 2.4 IR heating for inactivation of microorganisms -- 2.4.1 Inactivation of pathogenic microorganisms -- 2.4.2 Inactivation of spores -- 2.4.3 Infrared pasteurization -- 2.5 Challenges and recommendations -- References -- 3 - Infrared processing equipment for the food industry -- 3.1 Introduction -- 3.2 Infrared emitters -- 3.3 Infrared processing equipment -- 3.3.1 Infrared thermal processors -- 3.3.2 Infrared blanchers and dryers -- 3.3.3 Infrared peeling -- 3.3.4 Infrared baking -- 3.4 Optimization of infrared processing -- 3.5 Conclusion -- References -- 4 - Applications of infrared processing in the food industry -- 4.1 Introduction. , 4.2 Applications of IR radiations in food processing -- 4.2.1 Infrared pasteurization and sterilization -- 4.2.2 Infrared baking -- 4.2.3 Infrared roasting -- 4.2.4 Infrared drying -- 4.2.5 Infrared blanching -- 4.2.6 Infrared and microorganisms -- 4.2.6.1 DNA < -- cell wall < -- RNA < -- protien -- 4.2.7 Infrared thawing -- 4.2.8 Infrared enzyme inactivation -- 4.3 Quality and sensory changes by IR heating -- 4.4 Conclusion -- References -- Two - Microwave processing operations -- 5 - Principles of microwave heating for the food industry -- 5.1 Introduction -- 5.2 Microwaves -- 5.2.1 Microwave frequency in heating -- 5.2.2 Microwaves and dielectric materials -- 5.2.3 Dielectric properties -- 5.2.4 Microwave heating mechanisms -- 5.2.4.1 Microwave electric field heating -- Ionic conduction -- Dipolar polarization -- 5.2.4.2 Microwave magnetic field heating -- Eddy current loss -- Hysteresis loss -- Magnetic resonance losses -- Residual losses -- 5.2.5 Power loss owing to microwave heating -- 5.2.6 Penetration depth of microwaves -- 5.2.7 The fundamentals of microwave interactions mechanisms at different materials -- 5.2.7.1 Reflection impact -- 5.2.7.2 Heating impact -- 5.2.7.3 Discharge impact -- References -- 6 - Microwave heating equipment for the food industry -- 6.1 Microwave application in different heating processes: mechanisms of heat transfer -- 6.2 Description of industrial equipment using microwaves -- 6.2.1 Discontinuous equipment -- 6.2.2 Continuous equipment -- 6.3 Discontinuous systems -- 6.3.1 Transport phenomena in domestic households -- 6.3.1.1 Electromagnetic field prediction by applying Maxwell's equations -- 6.3.1.2 Modeling microwave food heating -- 6.3.1.3 Flow, energy, and water transport in the air -- 6.3.2 Microwave heating process in tanks -- 6.3.2.1 Mathematical modeling of microwave heating in tanks. , 6.3.3 Fluidized bed dryers -- 6.3.3.1 Mathematical modeling of microwave heating in fluidized systems -- 6.4 Continuous systems -- 6.4.1 Pasteurization of liquids. Prediction of temperature and electromagnetic behavior oriented to microbiology stability -- 6.4.1.1 Equipment-advances on designing and scaling -- 6.4.1.2 Design and optimization of processes and equipment by mathematical modeling -- 6.4.1.3 Microbial and enzymatic inactivation kinetics -- 6.5 Conclusions -- References -- 7 - Application of microwave processing in the food industry -- 7.1 Introduction: transport phenomena during food dehydration -- 7.2 Osmotic dehydration. Mass transfer -- 7.2.1 Mass transfer mechanisms -- 7.2.2 Microscopic mass balances -- 7.2.3 Effective diffusion coefficients -- 7.3 Microwave dehydration. Mass and energy transfer -- 7.3.1 Energy transfer -- 7.3.2 Dielectric properties -- 7.3.2.1 Dependence of the dielectric properties on temperature and humidity -- 7.4 Mathematical modeling of osmotic-microwave process. Food properties -- 7.4.1 Mathematical modeling of osmotic dehydration (DO) -- 7.4.1.1 Empirical modeling -- Azuara's model -- 7.4.1.2 Osmotic-diffusional cellular model (ODCM) -- 7.4.1.3 Diffusional modeling of countercurrent flow (DMCF) -- 7.4.2 Microwave dehydration model with global properties (MWDGP) -- 7.4.2.1 Modeling of the heating stage with mild vaporization -- 7.4.2.2 Modeling the constant temperature stage with intense vaporization -- 7.4.3 Microwave dehydration porous media model (MWDPM) -- 7.4.3.1 Multiphase mass transport in porous media -- 7.4.3.2 Momentum transfer in porous media -- 7.4.3.3 Heat transfer in porous media -- 7.4.3.4 Absorbed microwave energy -- 7.4.3.5 Initial and boundary conditions -- 7.4.4 Combined dehydration modeling (DO-MWD) -- 7.4.4.1 First stage -- 7.4.4.2 Second stage -- 7.5 Numerical solution. , 7.5.1 Cellular osmotic-diffusional model (ODCM) solution for osmotic dehydration -- 7.5.2 Solution of the diffusional model in countercurrent flow (DMCF) for osmotic dehydration -- 7.5.3 Microwave dehydration model solution (MWDGP) -- 7.5.4 Solution the multiphase mass transport in porous media -- 7.6 Validation -- 7.6.1 Validation of the osmotic dehydration models -- 7.6.1.1 Azuara's model -- 7.6.1.2 Validation of osmotic-diffusional cellular model (ODCM) solution for osmotic dehydration -- Application of the osmotic-diffusional cellular model (ODCM) to pear half slices -- Application of the osmotic-diffusional cellular model (ODCM) to kiwi slices -- 7.6.1.3 Validation of the diffusional model in countercurrent flow (DMCF) for osmotic dehydration -- Application of the diffusional model in countercurrent flow (DMCF) to half-pear slices -- Application of the diffusional model in countercurrent flow (DMCF) to kiwi slices -- 7.6.2 Validation of the combined model of osmotic dehydration followed by microwave dehydration -- 7.6.2.1 Application of the osmotic-microwave dehydration model to pear slices -- 7.6.2.2 Application of the osmotic-microwave dehydration model to banana slices -- 7.6.3 Application of the osmotic-microwave dehydration model (porous media) -- 7.6.3.1 Absorbed microwave power -- 7.6.3.2 Temperature, pressure, liquid, and vapor concentration profiles -- 7.6.3.3 Effect of osmodehydration pretreatment -- 7.7 Conclusions -- References -- Three - Ohmic heating operations -- 8 - Principles of Ohmic heating for the food industry -- 8.1 Introduction -- 8.2 History of OH -- 8.3 Principle of OH -- 8.4 Some critical parameters in OH -- 8.4.1 Electrical conductivity -- 8.4.2 Frequency and waveform -- 8.4.3 Product size, heat capacity, and viscosity -- 8.4.4 Current intensity and voltage -- 8.4.5 Heating power and heating rate. , 8.4.6 Energy efficiency -- 8.4.7 Electrodes -- 8.4.8 Filed strength -- 8.5 Advantages and disadvantages of OH -- 8.5.1 Advantages of OH -- 8.5.2 Disadvantages of OH -- 8.6 Commercial applications of OH -- 8.7 Conclusion -- References -- 9 - Ohmic heating equipment for the food industry -- 9.1 Introduction -- 9.2 Components of an Ohmic system -- 9.2.1 Power source -- 9.2.2 Electrodes -- 9.2.3 Heating chamber -- 9.2.4 Process temperature monitoring setup -- 9.3 Batch Ohmic systems -- 9.3.1 Lab-scale units -- 9.4 Continuous systems -- 9.4.1 Fluid jet Ohmic heaters -- 9.4.2 Reactor vessels -- 9.4.3 Tubular heaters -- 9.4.4 Sequential heaters with elbow types -- 9.4.5 Ohmic heating in the kHz range -- 9.5 Conclusion -- References -- 10 - Application of Ohmic heating in the food industry -- 10.1 Introduction -- 10.2 Basic principles and main process parameters -- 10.3 Application of Ohmic heating in food -- 10.3.1 Blanching -- 10.3.2 Pasteurization and sterilization -- 10.3.3 Extraction -- 10.3.4 Drying/dehydration -- 10.3.5 Cooking -- 10.3.6 Ohmic thawing -- 10.3.7 Enzyme and microbial inactivation -- 10.3.8 Effect of Ohmic heating on starch gelatinization -- 10.4 Conclusion -- References -- Four - Radiofrequency (RF) processing operations -- 11 - Principles of radiofrequency processing in the food industry -- 11.1 Introduction -- 11.2 Principles of radiofrequency (RF) processing -- 11.3 Factors affecting RF heating -- 11.4 Effects of RF heating -- 11.4.1 Microbiological aspects -- 11.4.2 Effects of RF heating on quality attributes of food -- 11.4.2.1 Color -- 11.4.2.2 Moisture content and water activity -- 11.4.2.3 Nutritional composition -- 11.4.2.4 Phytochemicals and antioxidant activity -- 11.4.2.5 Texture -- 11.4.2.6 Microstructure -- 11.4.2.7 Enzyme activity -- 11.5 Applications of RF -- 11.6 Advantages and disadvantages of RF processing. , 11.6.1 Advantages of RF processing of foods (Rowley, 2001.
    Weitere Ausg.: Print version: Jafari, Seid Mahdi Emerging Thermal Processes in the Food Industry San Diego : Elsevier Science & Technology,c2022 ISBN 9780128221075
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cambridge, Massachusetts ; : Woodhead Publishing,
    UID:
    edoccha_9960949669502883
    Umfang: 1 online resource (398 pages)
    ISBN: 0-12-823385-0
    Serie: Unit operations and processing equipment in the food industry
    Inhalt: Emerging Thermal Processes in the Food Industry, a volume in the Unit Operations and Processing Equipment in the Food Industry series, explains the processing operations and equipment necessary for thermal processing, including infrared heating, microwave processing, sonication, UV processing, ohmic heating and dielectric processing. These processes and unit operations are very important in terms of achieving favorable sensory properties and energy usage. Chapters emphasize basic texts relating to experimental, theoretical, computational and/or applications of food engineering principles and relevant processing equipment for emerging thermal unit operations.
    Anmerkung: Front Cover -- Emerging Thermal Processes in the Food Industry -- Emerging Thermal Processes in the Food Industry: Unit Operations and Processing Equipment in the Food Industry -- Copyright -- Contents -- List of contributors -- 1 - Introduction to emerging thermal food processes -- 1.1 Introduction -- 1.2 Infrared heating -- 1.3 Microwave heating -- 1.4 Radiofrequency heating -- 1.5 Ohmic heating -- 1.6 Combination of emerging thermal treatments with conventional processes -- 1.7 Conclusion and future perspective -- Acknowledgments -- References -- One - Infrared processing operations -- 2 - Principles of infrared heating in food processing and preservation -- 2.1 Introduction -- 2.2 Fundamentals of IR heating of foods -- 2.2.1 Classification of IR radiation -- 2.2.2 IR absorption characteristics of foods -- 2.2.3 Common infrared sources for food processing operations -- 2.3 Infrared heating in food processing -- 2.3.1 Infrared blanching -- 2.3.2 Infrared cooking -- 2.3.3 Infrared baking -- 2.3.4 Infrared roasting -- 2.3.5 Application of IR heating in drying -- 2.3.5.1 Infrared and hot-air drying -- 2.3.5.2 Infrared and freeze-drying -- 2.3.5.3 Infrared vacuum drying -- 2.3.5.4 Infrared and microwave drying -- 2.4 IR heating for inactivation of microorganisms -- 2.4.1 Inactivation of pathogenic microorganisms -- 2.4.2 Inactivation of spores -- 2.4.3 Infrared pasteurization -- 2.5 Challenges and recommendations -- References -- 3 - Infrared processing equipment for the food industry -- 3.1 Introduction -- 3.2 Infrared emitters -- 3.3 Infrared processing equipment -- 3.3.1 Infrared thermal processors -- 3.3.2 Infrared blanchers and dryers -- 3.3.3 Infrared peeling -- 3.3.4 Infrared baking -- 3.4 Optimization of infrared processing -- 3.5 Conclusion -- References -- 4 - Applications of infrared processing in the food industry -- 4.1 Introduction. , 4.2 Applications of IR radiations in food processing -- 4.2.1 Infrared pasteurization and sterilization -- 4.2.2 Infrared baking -- 4.2.3 Infrared roasting -- 4.2.4 Infrared drying -- 4.2.5 Infrared blanching -- 4.2.6 Infrared and microorganisms -- 4.2.6.1 DNA < -- cell wall < -- RNA < -- protien -- 4.2.7 Infrared thawing -- 4.2.8 Infrared enzyme inactivation -- 4.3 Quality and sensory changes by IR heating -- 4.4 Conclusion -- References -- Two - Microwave processing operations -- 5 - Principles of microwave heating for the food industry -- 5.1 Introduction -- 5.2 Microwaves -- 5.2.1 Microwave frequency in heating -- 5.2.2 Microwaves and dielectric materials -- 5.2.3 Dielectric properties -- 5.2.4 Microwave heating mechanisms -- 5.2.4.1 Microwave electric field heating -- Ionic conduction -- Dipolar polarization -- 5.2.4.2 Microwave magnetic field heating -- Eddy current loss -- Hysteresis loss -- Magnetic resonance losses -- Residual losses -- 5.2.5 Power loss owing to microwave heating -- 5.2.6 Penetration depth of microwaves -- 5.2.7 The fundamentals of microwave interactions mechanisms at different materials -- 5.2.7.1 Reflection impact -- 5.2.7.2 Heating impact -- 5.2.7.3 Discharge impact -- References -- 6 - Microwave heating equipment for the food industry -- 6.1 Microwave application in different heating processes: mechanisms of heat transfer -- 6.2 Description of industrial equipment using microwaves -- 6.2.1 Discontinuous equipment -- 6.2.2 Continuous equipment -- 6.3 Discontinuous systems -- 6.3.1 Transport phenomena in domestic households -- 6.3.1.1 Electromagnetic field prediction by applying Maxwell's equations -- 6.3.1.2 Modeling microwave food heating -- 6.3.1.3 Flow, energy, and water transport in the air -- 6.3.2 Microwave heating process in tanks -- 6.3.2.1 Mathematical modeling of microwave heating in tanks. , 6.3.3 Fluidized bed dryers -- 6.3.3.1 Mathematical modeling of microwave heating in fluidized systems -- 6.4 Continuous systems -- 6.4.1 Pasteurization of liquids. Prediction of temperature and electromagnetic behavior oriented to microbiology stability -- 6.4.1.1 Equipment-advances on designing and scaling -- 6.4.1.2 Design and optimization of processes and equipment by mathematical modeling -- 6.4.1.3 Microbial and enzymatic inactivation kinetics -- 6.5 Conclusions -- References -- 7 - Application of microwave processing in the food industry -- 7.1 Introduction: transport phenomena during food dehydration -- 7.2 Osmotic dehydration. Mass transfer -- 7.2.1 Mass transfer mechanisms -- 7.2.2 Microscopic mass balances -- 7.2.3 Effective diffusion coefficients -- 7.3 Microwave dehydration. Mass and energy transfer -- 7.3.1 Energy transfer -- 7.3.2 Dielectric properties -- 7.3.2.1 Dependence of the dielectric properties on temperature and humidity -- 7.4 Mathematical modeling of osmotic-microwave process. Food properties -- 7.4.1 Mathematical modeling of osmotic dehydration (DO) -- 7.4.1.1 Empirical modeling -- Azuara's model -- 7.4.1.2 Osmotic-diffusional cellular model (ODCM) -- 7.4.1.3 Diffusional modeling of countercurrent flow (DMCF) -- 7.4.2 Microwave dehydration model with global properties (MWDGP) -- 7.4.2.1 Modeling of the heating stage with mild vaporization -- 7.4.2.2 Modeling the constant temperature stage with intense vaporization -- 7.4.3 Microwave dehydration porous media model (MWDPM) -- 7.4.3.1 Multiphase mass transport in porous media -- 7.4.3.2 Momentum transfer in porous media -- 7.4.3.3 Heat transfer in porous media -- 7.4.3.4 Absorbed microwave energy -- 7.4.3.5 Initial and boundary conditions -- 7.4.4 Combined dehydration modeling (DO-MWD) -- 7.4.4.1 First stage -- 7.4.4.2 Second stage -- 7.5 Numerical solution. , 7.5.1 Cellular osmotic-diffusional model (ODCM) solution for osmotic dehydration -- 7.5.2 Solution of the diffusional model in countercurrent flow (DMCF) for osmotic dehydration -- 7.5.3 Microwave dehydration model solution (MWDGP) -- 7.5.4 Solution the multiphase mass transport in porous media -- 7.6 Validation -- 7.6.1 Validation of the osmotic dehydration models -- 7.6.1.1 Azuara's model -- 7.6.1.2 Validation of osmotic-diffusional cellular model (ODCM) solution for osmotic dehydration -- Application of the osmotic-diffusional cellular model (ODCM) to pear half slices -- Application of the osmotic-diffusional cellular model (ODCM) to kiwi slices -- 7.6.1.3 Validation of the diffusional model in countercurrent flow (DMCF) for osmotic dehydration -- Application of the diffusional model in countercurrent flow (DMCF) to half-pear slices -- Application of the diffusional model in countercurrent flow (DMCF) to kiwi slices -- 7.6.2 Validation of the combined model of osmotic dehydration followed by microwave dehydration -- 7.6.2.1 Application of the osmotic-microwave dehydration model to pear slices -- 7.6.2.2 Application of the osmotic-microwave dehydration model to banana slices -- 7.6.3 Application of the osmotic-microwave dehydration model (porous media) -- 7.6.3.1 Absorbed microwave power -- 7.6.3.2 Temperature, pressure, liquid, and vapor concentration profiles -- 7.6.3.3 Effect of osmodehydration pretreatment -- 7.7 Conclusions -- References -- Three - Ohmic heating operations -- 8 - Principles of Ohmic heating for the food industry -- 8.1 Introduction -- 8.2 History of OH -- 8.3 Principle of OH -- 8.4 Some critical parameters in OH -- 8.4.1 Electrical conductivity -- 8.4.2 Frequency and waveform -- 8.4.3 Product size, heat capacity, and viscosity -- 8.4.4 Current intensity and voltage -- 8.4.5 Heating power and heating rate. , 8.4.6 Energy efficiency -- 8.4.7 Electrodes -- 8.4.8 Filed strength -- 8.5 Advantages and disadvantages of OH -- 8.5.1 Advantages of OH -- 8.5.2 Disadvantages of OH -- 8.6 Commercial applications of OH -- 8.7 Conclusion -- References -- 9 - Ohmic heating equipment for the food industry -- 9.1 Introduction -- 9.2 Components of an Ohmic system -- 9.2.1 Power source -- 9.2.2 Electrodes -- 9.2.3 Heating chamber -- 9.2.4 Process temperature monitoring setup -- 9.3 Batch Ohmic systems -- 9.3.1 Lab-scale units -- 9.4 Continuous systems -- 9.4.1 Fluid jet Ohmic heaters -- 9.4.2 Reactor vessels -- 9.4.3 Tubular heaters -- 9.4.4 Sequential heaters with elbow types -- 9.4.5 Ohmic heating in the kHz range -- 9.5 Conclusion -- References -- 10 - Application of Ohmic heating in the food industry -- 10.1 Introduction -- 10.2 Basic principles and main process parameters -- 10.3 Application of Ohmic heating in food -- 10.3.1 Blanching -- 10.3.2 Pasteurization and sterilization -- 10.3.3 Extraction -- 10.3.4 Drying/dehydration -- 10.3.5 Cooking -- 10.3.6 Ohmic thawing -- 10.3.7 Enzyme and microbial inactivation -- 10.3.8 Effect of Ohmic heating on starch gelatinization -- 10.4 Conclusion -- References -- Four - Radiofrequency (RF) processing operations -- 11 - Principles of radiofrequency processing in the food industry -- 11.1 Introduction -- 11.2 Principles of radiofrequency (RF) processing -- 11.3 Factors affecting RF heating -- 11.4 Effects of RF heating -- 11.4.1 Microbiological aspects -- 11.4.2 Effects of RF heating on quality attributes of food -- 11.4.2.1 Color -- 11.4.2.2 Moisture content and water activity -- 11.4.2.3 Nutritional composition -- 11.4.2.4 Phytochemicals and antioxidant activity -- 11.4.2.5 Texture -- 11.4.2.6 Microstructure -- 11.4.2.7 Enzyme activity -- 11.5 Applications of RF -- 11.6 Advantages and disadvantages of RF processing. , 11.6.1 Advantages of RF processing of foods (Rowley, 2001.
    Weitere Ausg.: Print version: Jafari, Seid Mahdi Emerging Thermal Processes in the Food Industry San Diego : Elsevier Science & Technology,c2022 ISBN 9780128221075
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780128220115?
Meinten Sie 9780128210475?
Meinten Sie 9780128210765?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz