Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
  • 1
    Online-Ressource
    Online-Ressource
    Amsterdam, Netherlands ; : Elsevier,
    UID:
    almahu_9949982674502882
    Umfang: 1 online resource (874 pages)
    ISBN: 9780128221532 , 0128221534
    Inhalt: "Porous Carbons: Syntheses and Applications focuses on the fabrication and application of porous carbons. It considers fabrication at three scales: micropores, mesopores, and macropores. Carbon foams, sponges, and 3D-structured carbons are detailed. The title presents applications in four key areas: energy storage, energy conversion, energy adsorption, including batteries, supercapacitors, and fuel cells and environmental remediation, emphasizing the importance of pore structures at the three scales, and the diffusion and storage of various ions and molecules. The book presents a short history of each technique and material, and assesses advantages and disadvantages. This focused book provides researchers with a comprehensive understanding of both pioneering and current synthesis techniques for porous carbons, and their modern applications."--
    Anmerkung: Front Cover -- POROUS CARBONS -- POROUS CARBONS: Syntheses and Applications -- Copyright -- Contents -- Preface -- Acknowledgments -- 1 - Introduction -- 1.1 Carbon materials -- 1.1.1 Classification of carbon materials -- 1.1.2 Structure and nanotexture of carbon materials -- 1.1.3 Carbonization and graphitization -- 1.2 Pores in carbon materials -- 1.3 Identification and evaluation of pores in carbons -- 1.3.1 Gas adsorption -- 1.3.2 Mercury porosimetry -- 1.3.3 Microscopy techniques and image processing -- 1.4 Purposes and construction of this book -- 1.5 Abbreviations of technical terms employed -- References -- 2 - Syntheses of porous carbons -- 2.1 Microporous carbons -- 2.1.1 Activation -- 2.1.1.1 Physical activation -- 2.1.1.2 Chemical activation -- 2.1.1.3 Activated carbon fibers -- 2.1.2 Template-assisted carbonization -- 2.1.2.1 Zeolites -- 2.1.2.2 Other hard templates -- 2.1.3 Precursor design -- 2.1.3.1 Polymer blending -- 2.1.3.1.1 Polyvinylpyrrolidone -- 2.1.3.1.2 Poly(methyl methacrylate) -- 2.1.3.1.3 Poly(ethylene glycol) -- 2.1.3.1.4 Poly(ethylene oxide) -- 2.1.3.1.5 Poly(vinyl butyral) -- 2.1.3.1.6 Pitches -- 2.1.3.2 Molecular design -- 2.1.3.2.1 Labile functional groups -- 2.1.3.2.2 Defluorination -- 2.1.3.2.3 Porous organic frameworks -- 2.1.3.2.4 Metal carbides -- 2.2 Mesoporous carbons -- 2.2.1 Activation -- 2.2.2 Template-assisted carbonization -- 2.2.2.1 Silicas -- 2.2.2.1.1 Mesoporous silicas -- 2.2.2.1.2 Colloidal silicas -- 2.2.2.2 Magnesium oxide -- 2.2.2.3 Eutectic metal salts -- 2.2.2.4 Other hard templates -- 2.2.3 Precursor design -- 2.2.3.1 Polymer blends -- 2.2.3.1.1 Block copolymers -- 2.2.3.1.2 Poly(ethylene glycol) -- 2.2.3.1.3 Poly(methyl methacrylate) -- 2.2.3.1.4 Poly(vinyl butyral) -- 2.2.3.1.5 Melamine -- 2.2.3.2 Metal organic and covalent organic frameworks -- 2.2.3.3 Carbon aerogels. , 2.2.3.4 Ionic liquids -- 2.2.3.5 Others -- 2.3 Macroporous carbons -- 2.3.1 Carbonization with blowing -- 2.3.1.1 Pyrolysis under pressure -- 2.3.1.2 Addition of blowing agents -- 2.3.1.3 Self-blowing -- 2.3.2 Template-assisted carbonization -- 2.3.3 Precursor design -- 2.3.3.1 Polymer blend -- 2.3.3.2 Exfoliation of graphite oxides -- 2.3.4 Graphene foams -- 2.3.4.1 Assemblage of reduced graphene oxide -- 2.3.4.1.1 Hydrothermal treatment -- 2.3.4.1.2 Freeze-drying -- 2.3.4.1.3 Templating -- 2.3.4.1.4 Solvent evaporation -- 2.3.4.1.5 Cross-linking -- 2.3.4.1.6 3D-printing -- 2.3.4.2 Assemblage of graphene nanoflakes -- 2.3.5 Assemblage of carbon nanotubes -- 2.3.6 Other processes -- 2.4 Hierarchically porous carbons -- 2.4.1 Carbonization with dual assistances -- 2.4.2 Carbonization process design -- 2.4.3 Inheritance of precursor texture -- References -- 3 . Porous carbons for energy storage and conversion -- 3.1 Rechargeable batteries -- 3.1.1 Intercalation-type lithium-ion batteries -- 3.1.1.1 Graphitized carbons -- 3.1.1.2 Nongraphitized carbons -- 3.1.1.3 MXenes -- 3.1.2 Redox-type lithium-ion batteries -- 3.1.2.1 Lithium compounds -- 3.1.2.1.1 For the positive electrode -- 3.1.2.1.2 For the negative electrode -- 3.1.2.2 Metallic silicon -- 3.1.2.3 Metallic germanium -- 3.1.2.4 Tin oxide and metallic tin -- 3.1.2.5 Titanium oxides -- 3.1.2.6 Transition metal oxides -- 3.1.2.7 Other compounds -- 3.1.3 Lithium-sulfur and lithium-oxygen batteries -- 3.1.3.1 Lithium-sulfur batteries -- 3.1.3.2 Lithium-oxygen batteries -- 3.1.4 Sodium-ion batteries -- 3.1.5 Potassium-ion batteries -- 3.2 Supercapacitors -- 3.2.1 Activated carbons and activated carbon fibers -- 3.2.2 Templated carbons -- 3.2.2.1 Zeolite-templated carbons -- 3.2.2.2 MgO-templated carbons -- 3.2.2.3 Silica-templated carbons -- 3.2.2.4 Alumina-templated carbons. , 3.2.2.5 CaCO3-templated carbons -- 3.2.3 Precursor-designed carbon -- 3.2.3.1 Polymer-blended carbons -- 3.2.3.2 Carbide-derived carbons -- 3.2.3.3 MOF- and COF-derived carbons -- 3.2.3.4 Carbon foams -- 3.2.3.5 Graphene and reduced graphene oxide -- 3.2.3.6 Carbon nanotubes and nanofibers -- 3.2.3.7 Other precursors -- 3.2.4 Mechanical modification of carbon texture -- 3.2.5 Bifunctional electrodes -- 3.3 Hybrid cells -- 3.3.1 Faraday reaction at negative electrode (F//A-type) -- 3.3.1.1 Carbon materials -- 3.3.1.1.1 Asymmetric combination of carbons in two electrodes -- 3.3.1.1.2 Symmetric combinations of carbons in two electrodes -- 3.3.1.2 Lithium compounds -- 3.3.1.3 Metals -- 3.3.1.4 Metal oxides -- 3.3.1.4.1 Iron oxides -- 3.3.1.4.2 Manganese oxides -- 3.3.1.4.3 Vanadium oxides -- 3.3.1.4.4 Molybdenum oxides -- 3.3.1.4.5 Titanium oxides -- 3.3.1.4.6 Other oxides -- 3.3.1.5 Other materials -- 3.3.2 Faraday reaction at the positive electrode (A//F-type) -- 3.4 Fuel cells -- 3.4.1 Noble metal-based catalysts -- 3.4.1.1 Templated porous carbons -- 3.4.1.2 Carbon nanotubes and nanofibers -- 3.4.1.3 Reduced graphene oxides -- 3.4.2 Metal-free catalysts -- 3.4.2.1 Templated porous carbons -- 3.4.2.2 Precursor-designed porous carbons -- 3.4.2.3 Carbon nanotubes and nanofibers -- 3.4.2.4 Graphene and reduced graphene oxides -- 3.4.2.5 Enhancement mechanism of N-doping -- 3.4.2.6 Other dopants -- 3.4.3 Transition metal-based catalysts -- 3.5 Hydrogen storage -- 3.5.1 Physical adsorption storage -- 3.5.1.1 Porous carbons -- 3.5.1.2 Metal-loaded porous carbons -- 3.5.1.3 Graphitic carbon nitrides -- 3.5.2 Electrochemical storage -- 3.6 Storage of methane and methane hydrate -- 3.6.1 Methane storage -- 3.6.2 Methane hydrate storage -- 3.7 Thermal energy storage -- 3.7.1 Thermal energy storage -- 3.7.1.1 Graphite and exfoliated graphite. , 3.7.1.1.1 Impregnation of PCMs -- 3.7.1.1.2 Mixing into PCMs -- 3.7.1.2 Graphene and reduced graphene oxides -- 3.7.1.2.1 Impregnation of PCMs -- 3.7.1.2.2 Mixing into PCMs -- 3.7.1.3 Other carbons -- 3.7.1.3.1 Impregnation of PCMs -- 3.7.1.3.2 Mixing into PCMs -- 3.7.2 Adsorption heat pumps -- References -- 4 - Porous carbons for environment remediation -- 4.1 Adsorption -- 4.1.1 Adsorptive removal of inorganic pollutants -- 4.1.1.1 Sulfur dioxide -- 4.1.1.2 Hydrogen sulfide -- 4.1.1.3 Ammonia -- 4.1.1.4 Arsenic ions -- 4.1.1.5 Phosphate ions -- 4.1.2 Adsorptive removal of organic pollutants -- 4.1.2.1 Volatile organic compounds -- 4.1.2.2 Phenols -- 4.1.2.3 Polycyclic aromatic hydrocarbons -- 4.1.2.4 Humic acid and trihalomethanes -- 4.1.2.5 Dyes -- 4.1.2.6 Biomolecules -- 4.1.3 Water vapor adsorption -- 4.1.4 CO2 capture -- 4.1.4.1 CO2 capture by carbons -- 4.1.4.2 Carbon supports of the adsorbents for CO2 -- 4.1.5 Metal trapping -- 4.1.5.1 Mercury -- 4.1.5.2 Uranium -- 4.1.5.3 Heavy metals -- 4.1.5.4 Competitive adsorption of metal ions -- 4.1.6 Oil sorption and recovery -- 4.1.6.1 Sorption procedure -- 4.1.6.2 Sorption capacity and sorptivity -- 4.1.6.3 Recycling of heavy oils and carbon sorbents -- 4.1.6.4 Mechanism of oil sorption -- 4.1.6.5 Preparation of carbon sorbents -- 4.2 Gas separation -- 4.2.1 Fundamentals -- 4.2.2 Molecular sieve carbon membranes -- 4.2.2.1 Polyimides -- 4.2.2.2 Poly(phenylene oxide) -- 4.2.2.3 Other polymers -- 4.3 Capacitive deionization -- 4.3.1 Cells for capacitive deionization -- 4.3.2 Porous carbons -- 4.3.2.1 Activated carbons and activated carbon fibers -- 4.3.2.2 Templated porous carbons -- 4.3.2.3 Precursor designed porous carbon -- 4.3.3 Reduced graphene oxides and reduced graphite oxides -- 4.3.3.1 Flakes and foams -- 4.3.3.2 With metal oxides -- 4.3.3.3 With other carbon materials. , 4.3.4 Carbon nanotubes and nanofibers -- 4.4 Electromagnetic interference shielding -- 4.4.1 Fundamentals -- 4.4.2 Porous carbons -- 4.4.3 Networks of carbon nanotubes and nanofibers -- 4.4.4 Graphene and related materials -- 4.4.5 Composites with inorganic materials -- 4.5 Sensing -- 4.5.1 Fundamentals -- 4.5.2 Chemical sensors -- 4.5.2.1 Porous carbons -- 4.5.2.2 Carbon nanotubes and nanofibers -- 4.5.2.2.1 Inorganic gases -- 4.5.2.2.2 Organic gases and vapors -- 4.5.2.3 Graphene and related materials -- 4.5.2.3.1 Inorganic gases -- 4.5.2.3.2 Organic gases and vapors -- 4.5.3 Strain sensors -- 4.5.3.1 Porous carbons -- 4.5.3.2 Carbon nanotubes and nanofibers -- 4.5.3.3 Graphene and related materials -- 4.5.4 Biosensors -- 4.5.4.1 Small biomolecules -- 4.5.4.2 Glucose -- 4.5.4.3 Hydrogen peroxide -- 4.5.4.4 Detection of DNA -- 4.5.4.5 Proteins -- 4.5.4.6 Detection of bacteria -- References -- 5 - Concluding remarks and prospects -- 5.1 Concluding remarks -- 5.1.1 Syntheses of porous carbons -- 5.1.2 Applications of porous carbons -- 5.2 Constraint and reaction space in carbons, pores -- 5.2.1 Porous carbons -- 5.2.1.1 Electrochemically active materials -- 5.2.1.2 Graphitic carbon nitride -- 5.2.1.3 Sulfur -- 5.2.1.4 Methane hydrate -- 5.2.2 Carbon nanotubes -- 5.2.2.1 Carbon nanotubes -- 5.2.2.2 Fullerenes -- 5.2.2.3 Potassium iodide and iodine -- 5.2.2.4 Sulfur -- 5.2.2.5 Organic molecules -- 5.2.2.6 Water molecules -- 5.2.3 Creation of constrained spaces by carbon coating -- 5.2.3.1 Metallic silicon -- 5.2.3.2 Metallic germanium -- 5.2.3.3 Metallic tin -- 5.2.3.4 Graphite -- 5.2.3.5 Lithium compounds -- 5.2.3.6 Photocatalysts -- 5.2.4 Syntheses of inorganic materials -- 5.2.4.1 Platinum -- 5.2.4.2 Ceramics -- References -- Index.
    Weitere Ausg.: ISBN 9780128221150
    Weitere Ausg.: ISBN 0128221151
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780128221105?
Meinten Sie 9780128021170?
Meinten Sie 9780128201190?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz