Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
  • 1
    UID:
    almahu_9949295149002882
    Umfang: 1 online resource (854 pages)
    ISBN: 0-12-823267-6
    Inhalt: "Sustainable Biochar for Water and Wastewater Treatment addresses the worldwide water contamination and scarcity problem by presenting an innovative and cost-efficient solution. This book directly deals with the Sustainable Development Goal 6: Ensure availability and sustainable management of water and sanitation for all. Each chapter is authored by a respected expert in the field of water and wastewater treatment, with each chapter including case studies, worked examples, and exercises. [...] The book covers the various aspects of biochar requirements for use in adsorption science and technology. It includes vital information on this hot topic and provides a real solution to the global issues of water contamination and scarcity."--
    Inhalt: The book is the perfect introduction to the field and is multipurpose in that it can be used for teaching, learning, research, and practice. The book is invaluable for undergraduate level and above in water science, environmental sciences, soil science, material sciences and engineering, chemical sciences and engineering, and biological sciences.
    Anmerkung: Intro -- Sustainable Biochar for Water and Wastewater Treatment -- Copyright -- Contents -- Contributors -- Preface -- About the editors -- Chapter 1: Comprehensive biomass characterization in preparation for conversion -- 1. Introduction -- 2. Biomass conversion processes -- 3. Biomass properties in preparation for biological conversion -- 3.1. Biomass characterization in preparation for bioethanol production -- 3.2. Characterization of biomass in preparation for biodiesel production -- 3.3. Characterization of biomass in preparation for biogas production -- 4. Biomass properties in preparation for thermochemical conversion -- 4.1. Heating value analysis -- 4.2. Proximate analysis -- 4.3. Ultimate analysis -- 4.4. Eutectic point analysis for biomass -- 4.5. Other biomass characterization processes -- 4.5.1. Bulk density -- 4.5.2. Particle density -- 4.5.3. Particle size distribution (PSD) -- 4.5.4. Angle of repose -- 4.5.5. Angle of friction -- 4.5.6. Heat capacity and thermal conductivity of biomass -- 5. Conclusion -- Questions and problems -- References -- Chapter 2: Biomass carbonization technologies -- 1. Introduction -- 2. Char physicochemical properties -- 3. Effect of operational variables on the yield and quality of charcoal -- 3.1. Effect of temperature -- 3.2. Effect of ash content -- 3.3. Effect of acids -- 3.4. Effect of heating rate -- 3.5. Effect of pressure -- 4. Carbonization reactions -- 5. Equipment for carbonization processes -- 5.1. The ``classical´´ methods for charcoal production -- 5.1.1. Kilns for wood carbonization -- Earth kilns -- Brick, concrete, and metal kilns -- Brick and concrete kilns -- Metal kilns -- 5.1.2. Retorts to produce charcoal -- 5.2. Charcoal as by-product -- 5.2.1. Auger pyrolysis and rotary drum reactors -- Auger pyrolysis reactor -- Rotary drum reactors. , 5.2.2. Flash (high-pressure) pyrolysis reactors -- 5.2.3. Fast pyrolysis reactors -- 5.2.4. Solar pyrolysis reactors -- 5.3. Other types of charcoal for environmental remediation and other uses -- 5.3.1. By-product gasification chars from commercial gasification plants -- 5.3.2. Intermediate gasification chars from CHP systems -- 5.3.3. Chars from hydrothermal carbonization -- 6. Conclusions -- Questions and problems -- Acknowledgment -- References -- Chapter 3: Physicochemical characterization of biochar derived from biomass -- 1. Introduction -- 2. Thermal conversion processes for the production of biochar -- 3. Physical properties of biochar -- 3.1. Particle density -- 3.2. Bulk or apparent density -- 3.3. Particle size and particle size distribution (PSD) -- 3.4. Angle of repose -- 3.5. Angle of friction -- 3.6. Heat capacity and thermal conductivity of biochar -- 4. Important thermal related properties -- 4.1. Proximate analysis -- 4.1.1. Moisture content (MC) -- 4.1.2. Volatile combustible matter (VCM) -- 4.1.3. Fixed carbon (FC) and ash -- 4.2. Ultimate analysis -- 4.3. Heating value analysis -- 4.3.1. Heat of combustion -- 4.3.2. Stoichiometry of reactions -- 4.4. Eutectic point analysis -- 5. Summary of standard methods for biochar analysis -- 6. Biochar conversion into activated carbon and performance analysis -- 6.1. Physical activation processes -- 6.2. Chemical activation process -- 6.3. Adsorption isotherms for activated carbon -- 7. Conclusions -- Questions, concepts, definitions, and problems -- Biochar use for heat, energy, and power -- Biochar use for nonenergy applications -- Proximate analysis calculations -- Ultimate analysis and Van Krevelen plot -- Heating value calculations -- Biochar chemical formula -- Stoichiometric air-to-fuel ratio (AFR) calculations -- Slagging and fouling factor for coal. , Slagging and fouling factor for dairy manure ash -- Biochar production via gasification and subsequent biochar use -- References -- Chapter 4: Biochar characterization for water and wastewater treatments -- 1. Introduction -- 2. Laboratory Analysis of biochar -- 3. Summary -- Questions and problems -- References -- Chapter 5: Biochar adsorption system designs -- 1. Introduction -- 2. Sorption isotherm models -- 2.1. One-parameter isotherm -- 2.1.1. Henry's law -- 2.2. Two-parameter isotherms -- 2.2.1. Freundlich isotherm model -- 2.2.2. Langmuir isotherm model -- 2.2.3. Temkin isotherm model -- 2.2.4. Hill isotherm model -- 2.2.5. Dubinin-Radushkevich isotherm model -- 2.2.6. Halsey model -- 2.3. Three-parameter isotherm models -- 2.3.1. Sips (Langmuir-Freundlich) isotherm model -- 2.3.2. Toth isotherm model -- 2.3.3. Redlich-Peterson isotherm model -- 2.3.4. Radke-Prausnitz isotherm model -- 2.3.5. Koble-Corrigan isotherm model -- 2.4. Multilayer physisorption isotherms -- 2.4.1. Brunauer-Emmett-Teller isotherm (BET) -- 2.4.2. Frenkel-Halsey-Hill isotherm (FHH) model -- 2.4.3. MacMillan-Teller isotherm (MET) model -- 2.5. Multicomponent sorption equilibrium models -- 2.5.1. Butler and Ockrent model or extended Langmuir model -- 2.5.2. Jain and Snoeyink model -- 2.5.3. Mathews and Weber model -- 2.5.4. Fritz and Schlunder multicomponent model -- 2.5.5. Dastgheib and Rockstraw model -- 2.5.6. Sheindorf et al. model -- 2.5.7. Ideal adsorbed solution theory (IAST) -- 3. Sorption kinetic models -- 3.1. Pseudo-first order model -- 3.2. Pseudo-second-order model -- 3.3. Revised pseudo-second-order model -- 3.4. Mixed-order (MO) model -- 3.5. Elovich equation -- 3.6. Intraparticle diffusion equation -- 3.7. Bangham equation -- 3.8. Linear film diffusion equation -- 4. Sorption column design -- 4.1. Fixed-bed or expanded bed adsorber (down flow or up flow). , 4.2. Moving-bed or fluidized-bed adsorber -- 5. Fixed-bed operation and design -- 5.1. Designing a fixed-bed adsorber applying a mass-transfer model -- 5.2. Empty bed contact time -- 5.3. Hutchins bed-depth-service-time (BDST) model -- 5.4. Thomas model -- 5.5. Adams-Bohart model -- 5.6. Wolborska model -- 5.7. Yoon-Nelson model -- 5.8. Clark's model -- 6. Conclusions -- Questions and Problems -- Acknowledgments -- References -- Chapter 6: Techno-economic analysis of biochar in wastewater treatment -- 1. Introduction -- 2. Biochar markets and economics -- 3. Biochar costs in wastewater facilities -- 3.1. Process design and capital costs -- 3.2. Operation and maintenance costs -- 3.3. Techno-economic analysis of wastewater facilities -- 3.4. Biochar properties and impacts on cost -- 4. Biochar production -- 4.1. Impacts of feedstock price -- 4.2. Impacts of biochar production technology -- 4.3. Impacts of biochar coproducts -- 4.4. Impacts of environmental incentives -- 5. Biochar market drivers -- 6. Conclusions -- Questions and problems -- References -- Chapter 7: Retention of oxyanions on biochar surface -- 1. Introduction -- 2. Motivation for removing oxyanions of interest -- 3. Chemical properties of biochar influencing oxyanion sorption -- 4. Feedstock and pyrolysis temperatures influence on surface chemistry and physical properties of biochar -- 5. Physical properties of biochar influencing oxyanion sorption -- 6. Applications of biochar for removing oxyanions from water and wastewater -- 6.1. Comparison of unmodified and modified biochar toward oxyanion sorption -- 6.2. Surface modification of biochar for water and wastewater treatment -- 6.3. Mechanisms of oxyanion removal by biochars -- 7. Conclusions and future perspectives -- Questions and problems -- References. , Chapter 8: Arsenic removal from household drinking water by biochar and biochar composites: A focus on scale-up -- 1. Introduction -- 2. Biochar-based adsorbent synthesis -- 2.1. Biochar production and its relevance in arsenic removal -- 2.2. Engineering strategies to enhance arsenic removal -- 3. Adsorbent performance testing for scaled-up drinking water arsenic treatment -- 3.1. 1st screening: Adsorbents performance in monocomponent aqueous systems -- 3.2. 2nd screening: Multicomponent testing, naturally occurring As concentration testing, real water tests, large-scale c ... -- 3.2.1. Multicomponent testing -- 3.2.2. Tests with naturally occurring As concentrations -- 3.2.3. As sorption in natural water samples -- 3.2.4. Adsorbent recycling, regeneration, and/or safe disposal -- 3.3. 3rd screening: Utilization of biochar and biochar composites for drinking water treatment and ongoing scale-up exper ... -- 4. Conclusions -- Questions and problems -- References -- Chapter 9: Application of biochar for the removal of actinides and lanthanides from aqueous solutions -- 1. Introduction -- 2. Biochar and engineered biochar -- 3. Sorption performance and dynamics -- 3.1. pH dependency -- 3.2. Adsorbent dosage -- 3.3. Contact time and kinetic studies -- 3.4. Equilibrium studies: Isotherms and the effects of temperature -- 3.5. Multicomponent systems: Ionic strength and competitive ions -- 3.6. Regeneration, recycling, and reuse -- 3.7. Sorption mechanisms -- 4. Scaling up: From batch to column configuration -- 5. Conclusions, gaps, and future perspectives -- Questions and problems -- References -- Chapter 10: Microplastic removal from water and wastewater by carbon-supported materials -- 1. Introduction -- 2. Microplastics-Sources and effects in the aquatic environment -- 2.1. Definition of microplastics -- 2.2. Sources of microplastics. , 2.3. Effects of microplastics in the aquatic environment.
    Weitere Ausg.: Print version: Mohan, Dinesh Sustainable Biochar for Water and Wastewater Treatment San Diego : Elsevier,c2022 ISBN 9780128222256
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780128202265?
Meinten Sie 9780128221259?
Meinten Sie 9780128222126?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz