UID:
almahu_9949342272202882
Umfang:
1 online resource (524 pages)
ISBN:
0-12-823530-6
Inhalt:
"Advances in Microbe-assisted Phytoremediation of Polluted Sites provides a comprehensive overview of the use of phytoremediation to decontaminate polluted land through microbial enhanced phytoremediation, including the use of plants with respect to ecological and environmental science. The book discusses the potential of microbial-assisted phytoremediation of the contaminant, including heavy metals, pesticides, polyaromatic hydrocarbons, etc., with case studies as examples. Key subjects covered include plant-microbe interaction in contaminated ecosystems, microbe-augmented phytoremediation for improved ecosystem services, and success stories on microbe-assisted phytoremediation of contaminated sites."--
Anmerkung:
Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- PART 1 - Overview of microbe-assisted phytoremediation -- Chapter 1 - Microbe-assisted phytoremediation of environmental contaminants -- 1.1 Introduction -- 1.2 Environmental contaminants: Types, nature, and sources -- 1.3 Impact of environmental contaminants on the environment and human health -- 1.4 Plant-microbe association/interaction and its role in phytoremediation of environmental contaminants -- 1.4.1 Phytoremediation of organic and inorganic contaminants -- 1.4.2 Phytoremediation of wastewater -- 1.4.3 Role of constructed wetlands in treatment of wastewaters -- 1.5 Mechanisms involved in the phytoremediation of environmental contaminants -- 1.5.1 Phytostabilization -- 1.5.2 Phytovolatilization -- 1.5.3 Phytodegradation -- 1.5.4 Phytoaccumulation -- 1.5.5 Phytoextraction -- 1.5.6 Rhizoremediation -- 1.5.6.1 Plant growth promoting rhizobacteria (PGPR) -- 1.5.6.2 Arbuscular mycorrhizal fungi -- 1.6 Economic importance of microbe assisted phytoremediation of environmental contaminants -- 1.7 Conclusion -- References -- Chapter 2 - Microbial augmented phytoremediation with improved ecosystems services -- 2.1 Introduction -- 2.2 Concept of phytoremediation -- 2.3 Need of augmentation of substances in phytoremediation -- 2.3.1 Chemical augmentation -- 2.3.2 Biological augmentation -- 2.4 Role of microbes in soil ecosystem -- 2.4.1 Nutrient bioavailability in the soil -- 2.4.2 Contaminant bioavailability in the soil -- 2.4.3 Stress tolerance -- 2.4.3.1 Role of microbes in plants tolerance to drought -- 2.4.3.2 Role of microbes in plants tolerance to salinity stress -- 2.4.3.3 Role of microbes in plants tolerance to temperature stress -- 2.4.4 Biocontrol of pathogens -- 2.4.5 Microbes enhances overall plant growth.
,
2.5 Mechanism of microbe-assisted phytoremediation -- 2.6 Conclusion and future recommendation -- References -- Chapter 3 - Role of genetic engineering in microbe-assisted phytoremediation of polluted sites -- 3.1 Introduction -- 3.2 Microbe-assisted phytoremediation -- 3.2.1 Mechanism of phytoremediation using microorganism -- 3.2.1.1 Direct mechanism -- 3.2.1.2 Indirect mechanism -- 3.2.2 Advantages of microbe-assisted phytoremediation -- 3.3 Genetic engineering of microbes for assisting phytoremediation -- 3.3.1 Plant growth-promoting bacteria -- 3.3.2 Rhizospheric bacteria -- 3.3.3 Endophytic bacteria -- 3.4 Genetic engineering of plants for microbe-assisted phytoremediation -- 3.4.1 Engineering plants to enhance growth -- 3.4.2 Rhizosphere competence -- 3.4.3 Examining effects of the root targeted modification -- 3.5 Conclusions and future prospects -- Acknowledgments -- References -- Chapter 4 - Phytoremediation potential of genetically modified plants -- 4.1 Introduction -- 4.2 Heavy metal contamination -- 4.3 Technologies used in the remediation of HMs -- 4.3.1 Excavation -- 4.3.2 Composting -- 4.3.3 Electrokinetic remediation (EKR) -- 4.3.4 Bioreactors -- 4.4 Phytoremediation -- 4.5 Factors affecting phytoremediation -- 4.6 Advantages and disadvantages of phytoremediation -- 4.7 Role of genetic engineering in phytoremediation -- 4.8 Conclusion and future prospects -- References -- PART 2 - Microbe-assisted phytoremediation of inorganic contaminants -- chapter 5 - The role of bacteria in metal bioaccumulation and biosorption -- 5.1 Introduction -- 5.2 Microbial bioremediation -- 5.2.1 Biosorption -- 5.2.1.1 Extracellular adsorption -- 5.2.1.2 Cell surface adsorption -- 5.2.2 Bioaccumulation -- 5.3 Mechanisms underlying microbial metal biosorption and bioaccumulation -- 5.3.1 Extracellular adsorption.
,
5.3.2 Cell surface adsorption or complexation -- 5.3.2.1 Ion exchange mechanism -- 5.3.2.2 Surface complex mechanism -- 5.3.2.3 Bioaccumulation/Intracellular adsorption -- 5.4 Main factors influencing the bioaccumulation efficiency -- 5.4.1 pH -- 5.4.2 Temperature -- 5.4.3 The presence of other metal ions -- 5.4.4 Physical and chemical pretreatment -- 5.5 General conclusions and future perspectives -- Acknowledgments -- References -- Chapter 6 - Plant-microbe association to improve phytoremediation of heavy metal -- 6.1 Introduction -- 6.1.1 Phytoremediation -- 6.2 Metal resistance and uptake in microorganisms -- 6.3 Plant growth and metal uptake by plant growth-promoting bacteria (PGPB) -- 6.3.1 Phytoremediation assisted by soil bacteria -- 6.3.2 Effects of microorganisms on bioavailability of metals/metalloids and mobilization -- 6.3.3 Low-molecular-mass organic acids -- 6.3.4 Release of carboxylic acid anions -- 6.3.5 By secretion of siderophores -- 6.3.6 Other trace element chelators -- 6.3.7 Microbial-induced metal immobilization in phytostabilization -- 6.4 Effects of microorganisms on nutrients' uptake -- 6.5 Approach of genetic engineering for improved metal uptake -- 6.6 Current scenario and future perspective -- References -- Chapter 7 - Bacterial-mediated phytoremediation of heavy metals -- 7.1 Introduction -- 7.2 Heavy metals effects on living organisms -- 7.3 Remediation strategies to reduce the HM pollutants -- 7.3.1 Physicochemical approaches -- 7.3.2 Biological approaches/bioremediation -- 7.4 Phytoremediation -- 7.4.1 Phytoextraction -- 7.4.2 Phytostabilization -- 7.4.3 Phytodegradation -- 7.4.4 Phytovolatilization -- 7.4.5 Phytofiltration -- 7.4.6 Rhizodegradation -- 7.4.7 Phytotransformation -- 7.5 Microbial remediation -- 7.5.1 Fungal remediation -- 7.5.2 Bacterial remediation.
,
7.6 Mechanisms of bacterial-assisted phytoremediation -- 7.6.1 Plant growth promotion -- 7.6.2 Bacterial-assisted biodegradation -- 7.6.3 Biotransformation of HM -- 7.6.4 Bioleaching -- 7.6.5 Mobilization -- 7.6.6 Solubilization -- 7.6.7 Volatilization -- 7.6.8 Sequestration/accumulation -- 7.7 Case studies of PGP bacteria-assisted phytoremediation -- References -- Chapter 8 - Recent advances in microbial-aided phytostabilization of trace element contaminated soils -- 8.1 Introduction -- 8.2 Phytostabilization -- 8.2.1 TE behavior in soils - speciation and mobility -- 8.2.2 TE uptake and transfer in plant tissues -- 8.2.3 Plant tolerance to TE toxicity -- 8.2.4 Plant's selection -- 8.3 Aided phytostabilization -- 8.3.1 Effect of microbial amendments on soil properties -- 8.3.2 Microbial amendment's effect on TE immobilization. -- 8.3.3 Microbial amendment's effect on plant growth and development -- 8.3.4 Combined use of amendments -- 8.4 Future scope -- 8.4.1 Limitations of aided phytostabilisation -- 8.4.2 Future scope: Phytomanagement of TE-contaminated soils -- 8.5 Conclusion -- Acknowledgments -- References -- Chapter 9 - Phytoremediation of heavy metal contaminated soil in association with arbuscular mycorrhizal fungi -- 9.1 Introduction -- 9.2 Sources of HMs in soil -- 9.2.1 Natural processes -- 9.2.2 Anthropogenic processes -- 9.3 Adverse impacts of HMs -- 9.3.1 Impacts on the environment -- 9.3.2 Impact on the soil microbes and its enzymatic activity -- 9.3.3 Impact on the plants and animals -- 9.3.4 Impact on human health -- 9.4 Remediation of metal contaminated soil -- 9.4.1 Phytoremediation -- 9.5 Arbuscular mycorrhizal fungi -- 9.5.1 AMF as mediators of phytoremediation processes -- 9.5.2 Mechanisms of detoxification involving the association of mycorrhizal fungi and plants.
,
9.5.3 Mechanisms involving the retention by fungal structures -- 9.6 Biochemical mechanisms -- 9.6.1 Chelating agents and enzymes -- 9.6.2 Gene expression mediated by AMF -- 9.7 Conclusion -- References -- chapter 10 - Role of Pb-solubilizing and plant growth-promoting bacteria in Pb uptake by plants -- 10.1 Introduction -- 10.2 Presence and forms of Pb in soil -- 10.3 Phytoextraction of Pb from contaminated soils -- 10.4 Microbe-assisted Pb phytoextraction -- 10.5 Pb solubilization mechanisms by bacteria -- 10.5.1 Acidolysis -- 10.5.2 Redoxolysis -- 10.5.2.1 Bio-reduction -- 10.5.2.2 Bio-oxidation -- 10.5.3 Complexolysis -- 10.5.3.1 Low molecular weight organic acids -- 10.5.3.2 Siderophores -- 10.5.3.3 Biosurfactants -- 10.6 Effect of bacteria on plant growth in Pb-contaminated soils -- 10.6.1 Production of phytohormones -- 10.6.1.1 Auxins -- 10.6.1.2 Cytokinins -- 10.6.1.3 Gibberellins -- 10.6.2 Improvement of plant nutrition -- 10.6.2.1 Phosphorus solubilization -- 10.6.2.2 Siderophore production -- 10.6.2.3 Nitrogen fixation -- 10.6.2.4 Improvement of nutrient uptake -- 10.6.3 ACCD production -- 10.6.4 Triggering plant antioxidant system -- 10.7 Effects of bacterial inoculations on Pb phytoextraction -- 10.7.1 Effects of PGPBs on Pb phytoextraction -- 10.7.2 Effects of Pb-solubilizing PGPBs on Pb phytoextraction -- 10.8 Conclusions -- References -- Chapter 11 - Role of Cd-resistant plant growth-promoting rhizobacteria in plant growth promotion and alleviation of the p ... -- 11.1 Introduction -- 11.1.1 Plant growth promoting rhizobacteria and their classification -- 11.1.2 Loading of Cd in the environment -- 11.1.3 Toxic effects of Cd on plants, humans, and microorganisms -- 11.2 Cadmium-resistant PGPR -- 11.3 Cadmium-resistance mechanisms in PGPR -- 11.3.1 Cd removal by several efflux systems.
,
11.3.2 Intra/extracellular Cd binding.
Weitere Ausg.:
Print version: Bauddh, Kuldeep Advances in Microbe-Assisted Phytoremediation of Polluted Sites San Diego : Elsevier,c2022 ISBN 9780128234433
Sprache:
Englisch
Bookmarklink