Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
  • 1
    Online Resource
    Online Resource
    Oxford, England :Elsevier Ltd.,
    UID:
    almahu_9949640562202882
    Format: 1 online resource (353 pages)
    Edition: Seventh edition.
    ISBN: 0-12-823465-2
    Note: Front Cover -- Heat Pipes -- Copyright Page -- Contents -- About the authors -- Preface -- Acknowledgements -- Nomenclature -- Introduction -- 1 The heat pipe construction, performance and properties -- 2 The development of the heat pipe -- 3 The contents of this book -- References -- 1 Historical development -- 1.1 The Perkins tube -- 1.2 Patents -- 1.3 The baker's oven -- 1.4 The heat pipe -- 1.5 Can heat pipes address our future thermal? -- 1.6 Electrokinetics -- 1.7 Fluids and materials -- 1.8 The future? -- References -- 2 Heat pipe types and developments -- 2.1 Variable-conductance heat pipes -- 2.1.1 Passive control using bellows -- 2.1.2 Hot-reservoir variable-conductance heat pipes -- 2.1.3 Feedback control applied to the variable-conductance heat pipe -- 2.1.3.1 Electrical feedback control (active) -- 2.1.3.2 Mechanical feedback control (passive) -- 2.1.3.3 Comparison of systems -- 2.2 Heat pipe thermal diodes and switches -- 2.2.1 The thermal diode -- 2.2.2 The heat pipe switch -- 2.3 Pulsating (oscillating) heat pipes -- 2.4 Loop heat pipes and capillary-pumped loops -- 2.4.1 Thermosyphon loops -- 2.5 Microheat pipes -- 2.6 Use of electrokinetic forces -- 2.6.1 Electrokinetics -- 2.6.2 Electrohydrodynamics -- 2.6.3 Optomicrofluidics -- 2.7 Rotating heat pipes -- 2.7.1 Factors limiting the heat transfer capacity of the rotating heat pipe -- 2.7.2 Applications of rotating heat pipes -- 2.7.3 Microrotating heat pipes -- 2.8 Miscellaneous types -- 2.8.1 The sorption heat pipe -- 2.8.2 Magnetic fluid heat pipes -- References -- 3 Heat pipe materials, manufacturing and testing -- 3.1 The working fluid -- 3.1.1 Nanofluids -- 3.2 The wick or capillary structure -- 3.2.1 Homogeneous structures -- 3.2.2 Arterial wicks -- 3.3 Thermal resistance of saturated wicks -- 3.3.1 Meshes -- 3.3.2 Sintered wicks -- 3.3.3 Grooved wicks. , 3.3.4 Concentric annulus -- 3.3.5 Sintered metal fibres -- 3.3.6 Ceramic wick structures -- 3.4 The container -- 3.5 Compatibility -- 3.5.1 Historic compatibility data -- 3.5.2 Compatibility of water and steel - a discussion -- 3.5.2.1 The mechanism of hydrogen generation and protective layer formation -- 3.5.2.2 Work specifically related to passivation of mild steel -- 3.5.2.3 Use of an inhibitor -- 3.5.2.4 Production of a protective layer -- 3.5.2.5 Pipes with both inhibitor and oxide layer -- 3.5.2.6 Comments on the water-steel data -- 3.6 How about water and aluminium? -- 3.7 Heat pipe start-up procedure -- 3.8 Heat pipe manufacture and testing -- 3.8.1 Manufacture and assembly -- 3.8.1.1 Container materials -- 3.8.2 Wick materials and form -- 3.8.2.1 Wire mesh -- 3.8.2.2 Sintering -- 3.8.2.3 Vapour deposition -- 3.8.2.4 Microlithography and other techniques -- 3.8.2.5 Grooves -- 3.8.2.6 Felts and foams -- 3.8.3 Cleaning of container and wick -- 3.8.4 Material outgassing -- 3.8.5 Fitting of wick and end caps -- 3.8.6 Leak detection -- 3.8.7 Preparation of the working fluid -- 3.8.8 Heat pipe filling -- 3.8.8.1 Description of rig -- 3.8.8.2 Procedure for filling a heat pipe -- 3.8.9 Heat pipe sealing -- 3.8.10 Summary of assembly procedures -- 3.8.11 Heat pipes containing inert gas -- 3.8.11.1 Diffusion at the vapour/gas interface -- 3.8.11.2 Gas bubbles in arterial wick structures -- 3.8.12 Liquid-metal heat pipes -- 3.8.13 Liquid-metal heat pipes for the temperature range 500°C-1100°C -- 3.8.13.1 Cleaning and filling -- 3.8.13.2 Sealing -- 3.8.13.3 Operation -- 3.8.13.4 High-temperature liquid-metal heat pipes > -- 1200°C -- 3.8.13.5 Gettering -- 3.8.14 Safety aspects -- 3.8.15 3D-printed heat pipes -- 3.9 Heat pipe life-test procedures -- 3.9.1 Variables to be taken into account during life tests -- 3.9.1.1 The working fluid. , 3.9.1.2 The heat pipe wall -- 3.9.1.3 The wick -- 3.9.2 Life test procedures -- 3.9.2.1 Effect of heat flux -- 3.9.2.2 Effect of temperature -- 3.9.2.3 Compatibility -- 3.9.2.4 Other factors -- 3.9.3 Prediction of long-term performance from accelerated life tests -- 3.9.4 A life test programme -- 3.9.5 Spacecraft qualification plan -- 3.10 Heat pipe performance measurements (see also Section 3.9) -- 3.10.1 The test rig -- 3.10.2 Test procedures -- 3.10.3 Evaluation of a copper heat pipe and typical performance -- 3.10.3.1 Capabilities -- 3.10.3.2 Test procedure -- 3.10.3.3 Test results -- 3.10.3.4 Tests on thermosyphons to compare working fluids -- References -- 4 Heat transfer and fluid flow theory -- 4.1 Introduction -- 4.2 Operation of heat pipes -- 4.2.1 Wicked heat pipes -- 4.2.2 Thermosyphons -- 4.2.3 Loop heat pipes and capillary-pumped loops -- 4.3 Theoretical background -- 4.3.1 Gravitational head -- 4.3.2 Surface tension and capillarity -- 4.3.2.1 Introduction -- 4.3.2.2 Pressure difference across a curved surface -- 4.3.2.3 Change in vapour pressure at a curved liquid surface -- 4.3.2.4 Measurement of surface tension -- 4.3.2.5 Temperature dependence of surface tension -- 4.3.2.6 Capillary pressure ΔPc -- 4.3.3 Pressure difference due to friction forces -- 4.3.3.1 Laminar and turbulent flow -- 4.3.3.2 Laminar flow - the Hagen-Poiseuille equation -- 4.3.3.3 Turbulent flow - the Fanning equation -- 4.3.4 Flow in Wicks -- 4.3.4.1 Pressure difference in the liquid phase -- 4.3.4.2 Homogeneous wicks -- 4.3.4.3 Nonhomogeneous wicks -- 4.3.5 Vapour phase pressure difference, ΔPv -- 4.3.5.1 Introduction -- 4.3.5.2 Incompressible flow: (simple one-dimensional theory) -- 4.3.5.3 Incompressible flow: one-dimensional theories of Cotter and Busse -- 4.3.5.4 Pressure recovery -- 4.3.5.5 Two-dimensional incompressible flow -- 4.3.5.6 Compressible flow. , 4.3.5.7 Summary of vapour flow -- 4.3.6 Entrainment -- 4.3.7 Heat transfer and temperature difference -- 4.3.7.1 Introduction -- 4.3.7.2 Heat transfer in the evaporator region -- 4.3.7.3 Boiling heat transfer from plane surfaces -- 4.3.7.3.1 Bubble dynamic -- 4.3.7.3.2 Boiling curve -- 4.3.7.3.3 Pool-boiling heat transfer correlations -- 4.3.7.3.4 Burnout correlations -- 4.3.7.4 Boiling from wicked surfaces -- 4.3.7.5 Liquid-vapour interface temperature drop -- 4.3.7.6 Wick thermal conductivity -- 4.3.7.7 Heat transfer in the condenser -- 4.3.7.7.1 Nusselt's theory -- 4.3.7.7.2 Condensation heat transfer correlations -- 4.4 Application of theory to heat pipes and thermosyphons -- 4.4.1 Wicked heat pipes -- 4.4.1.1 The merit number -- 4.4.1.2 Operating limits -- 4.4.1.2.1 Viscous, or vapour pressure, limit -- 4.4.1.2.2 Sonic limit -- 4.4.1.2.3 Entrainment limit -- 4.4.1.2.4 Capillary limit (wicking limit) -- 4.4.1.3 Burnout -- 4.4.1.4 Gravity-assisted heat pipes -- 4.4.1.5 Total temperature drop -- 4.4.2 Thermosyphons -- 4.4.2.1 Working fluid selection -- 4.4.2.2 Entrainment limit -- 4.4.2.3 Thermal resistance and maximum heat flux -- 4.5 Nanofluids -- 4.6 Design guide -- 4.6.1 Introduction -- 4.6.2 Heat pipes -- 4.6.2.1 Fluid inventory -- 4.6.2.2 Priming -- 4.6.3 Design example 1 -- 4.6.3.1 Specification -- 4.6.3.2 Selection of materials and working fluid -- 4.6.3.2.1 Sonic limit -- 4.6.3.2.2 Entrainment limit -- 4.6.3.2.3 Wicking limit -- 4.6.3.2.4 Radial heat flux -- 4.6.3.2.5 Priming of the wick -- 4.6.3.2.6 Wall thickness -- 4.6.3.2.7 Conclusions on selection of working fluid -- 4.6.3.3 Detail design -- 4.6.3.3.1 Wick selection -- 4.6.3.3.2 Arterial diameter -- 4.6.3.3.3 Circumferential liquid distribution and temperature difference -- 4.6.3.3.4 Arterial wick -- 4.6.3.3.5 Final analysis -- 4.6.4 Design example 2 -- 4.6.4.1 Problem. , 4.6.4.2 Solution - original design -- 4.6.4.3 Solution - revised design -- 4.6.5 Thermosyphons -- 4.6.5.1 Fluid inventory -- 4.6.5.2 Entrainment limit -- 4.7 Summary -- References -- 5 Additive manufacturing applied to heat pipes -- 5.1 Introduction -- 5.2 Additive manufacturing considerations for heat pipes -- 5.3 State of the art -- 5.3.1 Additive manufacturing wick and heat pipe developments -- 5.3.2 Commercial examples -- 5.3.3 3D printed versus conventional wicks -- 5.4 Opportunities for additive manufacturing -- 5.4.1 Alternative lattice geometries -- 5.4.2 Evaporator section considerations -- 5.4.3 Condenser section considerations -- 5.4.4 Whole heat pipe and miscellaneous considerations -- 5.5 General challenges areas for heat pipes -- 5.6 Summary and outlook -- References -- 6 Heat pipe heat exchangers -- 6.1 Introduction -- 6.2 Heat pipe heat exchangers in buildings -- 6.3 Heat pipe heat exchangers in food processing -- 6.4 Heat pipe heat exchangers for the ceramics sector -- 6.4.1 Cross-flow heat pipe heat exchanger -- 6.4.2 Radiative heat pipe heat exchanger -- 6.4.3 Multipass heat pipe heat exchanger -- 6.5 Heat pipe heat exchangers waste heat boiler -- 6.6 Flat heat pipe heat exchangers -- 6.6.1 Flat heat pipes for solar applications -- 6.6.2 Heat pipe thermal collector -- 6.6.3 Battery thermal management using heat mat -- 6.6.4 Flat heat pipe for high temperatures -- 6.6.5 Flat heat pipes within refrigeration -- 6.7 Heat pipe units for waste management -- 6.8 Heat pipe heat exchangers in thermal energy storage -- 6.9 Other applications and case studies -- 6.9.1 Variable conductance heat pipe for automotive thermal management -- 6.9.2 Heat pipe radiator unit for space nuclear power reactor -- 6.9.3 Hybrid heat pipes for nuclear applications -- 6.9.4 Hybrid pump-assisted loop heat pipe -- 6.10 Concluding remarks -- References. , 7 Cooling of electronic components.
    Additional Edition: Print version: Jouhara, Hussam Heat Pipes San Diego : Elsevier Science & Technology,c2023 ISBN 9780128234648
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford, England :Elsevier Ltd.,
    UID:
    edoccha_9961420951002883
    Format: 1 online resource (353 pages)
    Edition: Seventh edition.
    ISBN: 0-12-823465-2
    Note: Front Cover -- Heat Pipes -- Copyright Page -- Contents -- About the authors -- Preface -- Acknowledgements -- Nomenclature -- Introduction -- 1 The heat pipe construction, performance and properties -- 2 The development of the heat pipe -- 3 The contents of this book -- References -- 1 Historical development -- 1.1 The Perkins tube -- 1.2 Patents -- 1.3 The baker's oven -- 1.4 The heat pipe -- 1.5 Can heat pipes address our future thermal? -- 1.6 Electrokinetics -- 1.7 Fluids and materials -- 1.8 The future? -- References -- 2 Heat pipe types and developments -- 2.1 Variable-conductance heat pipes -- 2.1.1 Passive control using bellows -- 2.1.2 Hot-reservoir variable-conductance heat pipes -- 2.1.3 Feedback control applied to the variable-conductance heat pipe -- 2.1.3.1 Electrical feedback control (active) -- 2.1.3.2 Mechanical feedback control (passive) -- 2.1.3.3 Comparison of systems -- 2.2 Heat pipe thermal diodes and switches -- 2.2.1 The thermal diode -- 2.2.2 The heat pipe switch -- 2.3 Pulsating (oscillating) heat pipes -- 2.4 Loop heat pipes and capillary-pumped loops -- 2.4.1 Thermosyphon loops -- 2.5 Microheat pipes -- 2.6 Use of electrokinetic forces -- 2.6.1 Electrokinetics -- 2.6.2 Electrohydrodynamics -- 2.6.3 Optomicrofluidics -- 2.7 Rotating heat pipes -- 2.7.1 Factors limiting the heat transfer capacity of the rotating heat pipe -- 2.7.2 Applications of rotating heat pipes -- 2.7.3 Microrotating heat pipes -- 2.8 Miscellaneous types -- 2.8.1 The sorption heat pipe -- 2.8.2 Magnetic fluid heat pipes -- References -- 3 Heat pipe materials, manufacturing and testing -- 3.1 The working fluid -- 3.1.1 Nanofluids -- 3.2 The wick or capillary structure -- 3.2.1 Homogeneous structures -- 3.2.2 Arterial wicks -- 3.3 Thermal resistance of saturated wicks -- 3.3.1 Meshes -- 3.3.2 Sintered wicks -- 3.3.3 Grooved wicks. , 3.3.4 Concentric annulus -- 3.3.5 Sintered metal fibres -- 3.3.6 Ceramic wick structures -- 3.4 The container -- 3.5 Compatibility -- 3.5.1 Historic compatibility data -- 3.5.2 Compatibility of water and steel - a discussion -- 3.5.2.1 The mechanism of hydrogen generation and protective layer formation -- 3.5.2.2 Work specifically related to passivation of mild steel -- 3.5.2.3 Use of an inhibitor -- 3.5.2.4 Production of a protective layer -- 3.5.2.5 Pipes with both inhibitor and oxide layer -- 3.5.2.6 Comments on the water-steel data -- 3.6 How about water and aluminium? -- 3.7 Heat pipe start-up procedure -- 3.8 Heat pipe manufacture and testing -- 3.8.1 Manufacture and assembly -- 3.8.1.1 Container materials -- 3.8.2 Wick materials and form -- 3.8.2.1 Wire mesh -- 3.8.2.2 Sintering -- 3.8.2.3 Vapour deposition -- 3.8.2.4 Microlithography and other techniques -- 3.8.2.5 Grooves -- 3.8.2.6 Felts and foams -- 3.8.3 Cleaning of container and wick -- 3.8.4 Material outgassing -- 3.8.5 Fitting of wick and end caps -- 3.8.6 Leak detection -- 3.8.7 Preparation of the working fluid -- 3.8.8 Heat pipe filling -- 3.8.8.1 Description of rig -- 3.8.8.2 Procedure for filling a heat pipe -- 3.8.9 Heat pipe sealing -- 3.8.10 Summary of assembly procedures -- 3.8.11 Heat pipes containing inert gas -- 3.8.11.1 Diffusion at the vapour/gas interface -- 3.8.11.2 Gas bubbles in arterial wick structures -- 3.8.12 Liquid-metal heat pipes -- 3.8.13 Liquid-metal heat pipes for the temperature range 500°C-1100°C -- 3.8.13.1 Cleaning and filling -- 3.8.13.2 Sealing -- 3.8.13.3 Operation -- 3.8.13.4 High-temperature liquid-metal heat pipes > -- 1200°C -- 3.8.13.5 Gettering -- 3.8.14 Safety aspects -- 3.8.15 3D-printed heat pipes -- 3.9 Heat pipe life-test procedures -- 3.9.1 Variables to be taken into account during life tests -- 3.9.1.1 The working fluid. , 3.9.1.2 The heat pipe wall -- 3.9.1.3 The wick -- 3.9.2 Life test procedures -- 3.9.2.1 Effect of heat flux -- 3.9.2.2 Effect of temperature -- 3.9.2.3 Compatibility -- 3.9.2.4 Other factors -- 3.9.3 Prediction of long-term performance from accelerated life tests -- 3.9.4 A life test programme -- 3.9.5 Spacecraft qualification plan -- 3.10 Heat pipe performance measurements (see also Section 3.9) -- 3.10.1 The test rig -- 3.10.2 Test procedures -- 3.10.3 Evaluation of a copper heat pipe and typical performance -- 3.10.3.1 Capabilities -- 3.10.3.2 Test procedure -- 3.10.3.3 Test results -- 3.10.3.4 Tests on thermosyphons to compare working fluids -- References -- 4 Heat transfer and fluid flow theory -- 4.1 Introduction -- 4.2 Operation of heat pipes -- 4.2.1 Wicked heat pipes -- 4.2.2 Thermosyphons -- 4.2.3 Loop heat pipes and capillary-pumped loops -- 4.3 Theoretical background -- 4.3.1 Gravitational head -- 4.3.2 Surface tension and capillarity -- 4.3.2.1 Introduction -- 4.3.2.2 Pressure difference across a curved surface -- 4.3.2.3 Change in vapour pressure at a curved liquid surface -- 4.3.2.4 Measurement of surface tension -- 4.3.2.5 Temperature dependence of surface tension -- 4.3.2.6 Capillary pressure ΔPc -- 4.3.3 Pressure difference due to friction forces -- 4.3.3.1 Laminar and turbulent flow -- 4.3.3.2 Laminar flow - the Hagen-Poiseuille equation -- 4.3.3.3 Turbulent flow - the Fanning equation -- 4.3.4 Flow in Wicks -- 4.3.4.1 Pressure difference in the liquid phase -- 4.3.4.2 Homogeneous wicks -- 4.3.4.3 Nonhomogeneous wicks -- 4.3.5 Vapour phase pressure difference, ΔPv -- 4.3.5.1 Introduction -- 4.3.5.2 Incompressible flow: (simple one-dimensional theory) -- 4.3.5.3 Incompressible flow: one-dimensional theories of Cotter and Busse -- 4.3.5.4 Pressure recovery -- 4.3.5.5 Two-dimensional incompressible flow -- 4.3.5.6 Compressible flow. , 4.3.5.7 Summary of vapour flow -- 4.3.6 Entrainment -- 4.3.7 Heat transfer and temperature difference -- 4.3.7.1 Introduction -- 4.3.7.2 Heat transfer in the evaporator region -- 4.3.7.3 Boiling heat transfer from plane surfaces -- 4.3.7.3.1 Bubble dynamic -- 4.3.7.3.2 Boiling curve -- 4.3.7.3.3 Pool-boiling heat transfer correlations -- 4.3.7.3.4 Burnout correlations -- 4.3.7.4 Boiling from wicked surfaces -- 4.3.7.5 Liquid-vapour interface temperature drop -- 4.3.7.6 Wick thermal conductivity -- 4.3.7.7 Heat transfer in the condenser -- 4.3.7.7.1 Nusselt's theory -- 4.3.7.7.2 Condensation heat transfer correlations -- 4.4 Application of theory to heat pipes and thermosyphons -- 4.4.1 Wicked heat pipes -- 4.4.1.1 The merit number -- 4.4.1.2 Operating limits -- 4.4.1.2.1 Viscous, or vapour pressure, limit -- 4.4.1.2.2 Sonic limit -- 4.4.1.2.3 Entrainment limit -- 4.4.1.2.4 Capillary limit (wicking limit) -- 4.4.1.3 Burnout -- 4.4.1.4 Gravity-assisted heat pipes -- 4.4.1.5 Total temperature drop -- 4.4.2 Thermosyphons -- 4.4.2.1 Working fluid selection -- 4.4.2.2 Entrainment limit -- 4.4.2.3 Thermal resistance and maximum heat flux -- 4.5 Nanofluids -- 4.6 Design guide -- 4.6.1 Introduction -- 4.6.2 Heat pipes -- 4.6.2.1 Fluid inventory -- 4.6.2.2 Priming -- 4.6.3 Design example 1 -- 4.6.3.1 Specification -- 4.6.3.2 Selection of materials and working fluid -- 4.6.3.2.1 Sonic limit -- 4.6.3.2.2 Entrainment limit -- 4.6.3.2.3 Wicking limit -- 4.6.3.2.4 Radial heat flux -- 4.6.3.2.5 Priming of the wick -- 4.6.3.2.6 Wall thickness -- 4.6.3.2.7 Conclusions on selection of working fluid -- 4.6.3.3 Detail design -- 4.6.3.3.1 Wick selection -- 4.6.3.3.2 Arterial diameter -- 4.6.3.3.3 Circumferential liquid distribution and temperature difference -- 4.6.3.3.4 Arterial wick -- 4.6.3.3.5 Final analysis -- 4.6.4 Design example 2 -- 4.6.4.1 Problem. , 4.6.4.2 Solution - original design -- 4.6.4.3 Solution - revised design -- 4.6.5 Thermosyphons -- 4.6.5.1 Fluid inventory -- 4.6.5.2 Entrainment limit -- 4.7 Summary -- References -- 5 Additive manufacturing applied to heat pipes -- 5.1 Introduction -- 5.2 Additive manufacturing considerations for heat pipes -- 5.3 State of the art -- 5.3.1 Additive manufacturing wick and heat pipe developments -- 5.3.2 Commercial examples -- 5.3.3 3D printed versus conventional wicks -- 5.4 Opportunities for additive manufacturing -- 5.4.1 Alternative lattice geometries -- 5.4.2 Evaporator section considerations -- 5.4.3 Condenser section considerations -- 5.4.4 Whole heat pipe and miscellaneous considerations -- 5.5 General challenges areas for heat pipes -- 5.6 Summary and outlook -- References -- 6 Heat pipe heat exchangers -- 6.1 Introduction -- 6.2 Heat pipe heat exchangers in buildings -- 6.3 Heat pipe heat exchangers in food processing -- 6.4 Heat pipe heat exchangers for the ceramics sector -- 6.4.1 Cross-flow heat pipe heat exchanger -- 6.4.2 Radiative heat pipe heat exchanger -- 6.4.3 Multipass heat pipe heat exchanger -- 6.5 Heat pipe heat exchangers waste heat boiler -- 6.6 Flat heat pipe heat exchangers -- 6.6.1 Flat heat pipes for solar applications -- 6.6.2 Heat pipe thermal collector -- 6.6.3 Battery thermal management using heat mat -- 6.6.4 Flat heat pipe for high temperatures -- 6.6.5 Flat heat pipes within refrigeration -- 6.7 Heat pipe units for waste management -- 6.8 Heat pipe heat exchangers in thermal energy storage -- 6.9 Other applications and case studies -- 6.9.1 Variable conductance heat pipe for automotive thermal management -- 6.9.2 Heat pipe radiator unit for space nuclear power reactor -- 6.9.3 Hybrid heat pipes for nuclear applications -- 6.9.4 Hybrid pump-assisted loop heat pipe -- 6.10 Concluding remarks -- References. , 7 Cooling of electronic components.
    Additional Edition: Print version: Jouhara, Hussam Heat Pipes San Diego : Elsevier Science & Technology,c2023 ISBN 9780128234648
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford, England :Elsevier Ltd.,
    UID:
    edocfu_9961420951002883
    Format: 1 online resource (353 pages)
    Edition: Seventh edition.
    ISBN: 0-12-823465-2
    Note: Front Cover -- Heat Pipes -- Copyright Page -- Contents -- About the authors -- Preface -- Acknowledgements -- Nomenclature -- Introduction -- 1 The heat pipe construction, performance and properties -- 2 The development of the heat pipe -- 3 The contents of this book -- References -- 1 Historical development -- 1.1 The Perkins tube -- 1.2 Patents -- 1.3 The baker's oven -- 1.4 The heat pipe -- 1.5 Can heat pipes address our future thermal? -- 1.6 Electrokinetics -- 1.7 Fluids and materials -- 1.8 The future? -- References -- 2 Heat pipe types and developments -- 2.1 Variable-conductance heat pipes -- 2.1.1 Passive control using bellows -- 2.1.2 Hot-reservoir variable-conductance heat pipes -- 2.1.3 Feedback control applied to the variable-conductance heat pipe -- 2.1.3.1 Electrical feedback control (active) -- 2.1.3.2 Mechanical feedback control (passive) -- 2.1.3.3 Comparison of systems -- 2.2 Heat pipe thermal diodes and switches -- 2.2.1 The thermal diode -- 2.2.2 The heat pipe switch -- 2.3 Pulsating (oscillating) heat pipes -- 2.4 Loop heat pipes and capillary-pumped loops -- 2.4.1 Thermosyphon loops -- 2.5 Microheat pipes -- 2.6 Use of electrokinetic forces -- 2.6.1 Electrokinetics -- 2.6.2 Electrohydrodynamics -- 2.6.3 Optomicrofluidics -- 2.7 Rotating heat pipes -- 2.7.1 Factors limiting the heat transfer capacity of the rotating heat pipe -- 2.7.2 Applications of rotating heat pipes -- 2.7.3 Microrotating heat pipes -- 2.8 Miscellaneous types -- 2.8.1 The sorption heat pipe -- 2.8.2 Magnetic fluid heat pipes -- References -- 3 Heat pipe materials, manufacturing and testing -- 3.1 The working fluid -- 3.1.1 Nanofluids -- 3.2 The wick or capillary structure -- 3.2.1 Homogeneous structures -- 3.2.2 Arterial wicks -- 3.3 Thermal resistance of saturated wicks -- 3.3.1 Meshes -- 3.3.2 Sintered wicks -- 3.3.3 Grooved wicks. , 3.3.4 Concentric annulus -- 3.3.5 Sintered metal fibres -- 3.3.6 Ceramic wick structures -- 3.4 The container -- 3.5 Compatibility -- 3.5.1 Historic compatibility data -- 3.5.2 Compatibility of water and steel - a discussion -- 3.5.2.1 The mechanism of hydrogen generation and protective layer formation -- 3.5.2.2 Work specifically related to passivation of mild steel -- 3.5.2.3 Use of an inhibitor -- 3.5.2.4 Production of a protective layer -- 3.5.2.5 Pipes with both inhibitor and oxide layer -- 3.5.2.6 Comments on the water-steel data -- 3.6 How about water and aluminium? -- 3.7 Heat pipe start-up procedure -- 3.8 Heat pipe manufacture and testing -- 3.8.1 Manufacture and assembly -- 3.8.1.1 Container materials -- 3.8.2 Wick materials and form -- 3.8.2.1 Wire mesh -- 3.8.2.2 Sintering -- 3.8.2.3 Vapour deposition -- 3.8.2.4 Microlithography and other techniques -- 3.8.2.5 Grooves -- 3.8.2.6 Felts and foams -- 3.8.3 Cleaning of container and wick -- 3.8.4 Material outgassing -- 3.8.5 Fitting of wick and end caps -- 3.8.6 Leak detection -- 3.8.7 Preparation of the working fluid -- 3.8.8 Heat pipe filling -- 3.8.8.1 Description of rig -- 3.8.8.2 Procedure for filling a heat pipe -- 3.8.9 Heat pipe sealing -- 3.8.10 Summary of assembly procedures -- 3.8.11 Heat pipes containing inert gas -- 3.8.11.1 Diffusion at the vapour/gas interface -- 3.8.11.2 Gas bubbles in arterial wick structures -- 3.8.12 Liquid-metal heat pipes -- 3.8.13 Liquid-metal heat pipes for the temperature range 500°C-1100°C -- 3.8.13.1 Cleaning and filling -- 3.8.13.2 Sealing -- 3.8.13.3 Operation -- 3.8.13.4 High-temperature liquid-metal heat pipes > -- 1200°C -- 3.8.13.5 Gettering -- 3.8.14 Safety aspects -- 3.8.15 3D-printed heat pipes -- 3.9 Heat pipe life-test procedures -- 3.9.1 Variables to be taken into account during life tests -- 3.9.1.1 The working fluid. , 3.9.1.2 The heat pipe wall -- 3.9.1.3 The wick -- 3.9.2 Life test procedures -- 3.9.2.1 Effect of heat flux -- 3.9.2.2 Effect of temperature -- 3.9.2.3 Compatibility -- 3.9.2.4 Other factors -- 3.9.3 Prediction of long-term performance from accelerated life tests -- 3.9.4 A life test programme -- 3.9.5 Spacecraft qualification plan -- 3.10 Heat pipe performance measurements (see also Section 3.9) -- 3.10.1 The test rig -- 3.10.2 Test procedures -- 3.10.3 Evaluation of a copper heat pipe and typical performance -- 3.10.3.1 Capabilities -- 3.10.3.2 Test procedure -- 3.10.3.3 Test results -- 3.10.3.4 Tests on thermosyphons to compare working fluids -- References -- 4 Heat transfer and fluid flow theory -- 4.1 Introduction -- 4.2 Operation of heat pipes -- 4.2.1 Wicked heat pipes -- 4.2.2 Thermosyphons -- 4.2.3 Loop heat pipes and capillary-pumped loops -- 4.3 Theoretical background -- 4.3.1 Gravitational head -- 4.3.2 Surface tension and capillarity -- 4.3.2.1 Introduction -- 4.3.2.2 Pressure difference across a curved surface -- 4.3.2.3 Change in vapour pressure at a curved liquid surface -- 4.3.2.4 Measurement of surface tension -- 4.3.2.5 Temperature dependence of surface tension -- 4.3.2.6 Capillary pressure ΔPc -- 4.3.3 Pressure difference due to friction forces -- 4.3.3.1 Laminar and turbulent flow -- 4.3.3.2 Laminar flow - the Hagen-Poiseuille equation -- 4.3.3.3 Turbulent flow - the Fanning equation -- 4.3.4 Flow in Wicks -- 4.3.4.1 Pressure difference in the liquid phase -- 4.3.4.2 Homogeneous wicks -- 4.3.4.3 Nonhomogeneous wicks -- 4.3.5 Vapour phase pressure difference, ΔPv -- 4.3.5.1 Introduction -- 4.3.5.2 Incompressible flow: (simple one-dimensional theory) -- 4.3.5.3 Incompressible flow: one-dimensional theories of Cotter and Busse -- 4.3.5.4 Pressure recovery -- 4.3.5.5 Two-dimensional incompressible flow -- 4.3.5.6 Compressible flow. , 4.3.5.7 Summary of vapour flow -- 4.3.6 Entrainment -- 4.3.7 Heat transfer and temperature difference -- 4.3.7.1 Introduction -- 4.3.7.2 Heat transfer in the evaporator region -- 4.3.7.3 Boiling heat transfer from plane surfaces -- 4.3.7.3.1 Bubble dynamic -- 4.3.7.3.2 Boiling curve -- 4.3.7.3.3 Pool-boiling heat transfer correlations -- 4.3.7.3.4 Burnout correlations -- 4.3.7.4 Boiling from wicked surfaces -- 4.3.7.5 Liquid-vapour interface temperature drop -- 4.3.7.6 Wick thermal conductivity -- 4.3.7.7 Heat transfer in the condenser -- 4.3.7.7.1 Nusselt's theory -- 4.3.7.7.2 Condensation heat transfer correlations -- 4.4 Application of theory to heat pipes and thermosyphons -- 4.4.1 Wicked heat pipes -- 4.4.1.1 The merit number -- 4.4.1.2 Operating limits -- 4.4.1.2.1 Viscous, or vapour pressure, limit -- 4.4.1.2.2 Sonic limit -- 4.4.1.2.3 Entrainment limit -- 4.4.1.2.4 Capillary limit (wicking limit) -- 4.4.1.3 Burnout -- 4.4.1.4 Gravity-assisted heat pipes -- 4.4.1.5 Total temperature drop -- 4.4.2 Thermosyphons -- 4.4.2.1 Working fluid selection -- 4.4.2.2 Entrainment limit -- 4.4.2.3 Thermal resistance and maximum heat flux -- 4.5 Nanofluids -- 4.6 Design guide -- 4.6.1 Introduction -- 4.6.2 Heat pipes -- 4.6.2.1 Fluid inventory -- 4.6.2.2 Priming -- 4.6.3 Design example 1 -- 4.6.3.1 Specification -- 4.6.3.2 Selection of materials and working fluid -- 4.6.3.2.1 Sonic limit -- 4.6.3.2.2 Entrainment limit -- 4.6.3.2.3 Wicking limit -- 4.6.3.2.4 Radial heat flux -- 4.6.3.2.5 Priming of the wick -- 4.6.3.2.6 Wall thickness -- 4.6.3.2.7 Conclusions on selection of working fluid -- 4.6.3.3 Detail design -- 4.6.3.3.1 Wick selection -- 4.6.3.3.2 Arterial diameter -- 4.6.3.3.3 Circumferential liquid distribution and temperature difference -- 4.6.3.3.4 Arterial wick -- 4.6.3.3.5 Final analysis -- 4.6.4 Design example 2 -- 4.6.4.1 Problem. , 4.6.4.2 Solution - original design -- 4.6.4.3 Solution - revised design -- 4.6.5 Thermosyphons -- 4.6.5.1 Fluid inventory -- 4.6.5.2 Entrainment limit -- 4.7 Summary -- References -- 5 Additive manufacturing applied to heat pipes -- 5.1 Introduction -- 5.2 Additive manufacturing considerations for heat pipes -- 5.3 State of the art -- 5.3.1 Additive manufacturing wick and heat pipe developments -- 5.3.2 Commercial examples -- 5.3.3 3D printed versus conventional wicks -- 5.4 Opportunities for additive manufacturing -- 5.4.1 Alternative lattice geometries -- 5.4.2 Evaporator section considerations -- 5.4.3 Condenser section considerations -- 5.4.4 Whole heat pipe and miscellaneous considerations -- 5.5 General challenges areas for heat pipes -- 5.6 Summary and outlook -- References -- 6 Heat pipe heat exchangers -- 6.1 Introduction -- 6.2 Heat pipe heat exchangers in buildings -- 6.3 Heat pipe heat exchangers in food processing -- 6.4 Heat pipe heat exchangers for the ceramics sector -- 6.4.1 Cross-flow heat pipe heat exchanger -- 6.4.2 Radiative heat pipe heat exchanger -- 6.4.3 Multipass heat pipe heat exchanger -- 6.5 Heat pipe heat exchangers waste heat boiler -- 6.6 Flat heat pipe heat exchangers -- 6.6.1 Flat heat pipes for solar applications -- 6.6.2 Heat pipe thermal collector -- 6.6.3 Battery thermal management using heat mat -- 6.6.4 Flat heat pipe for high temperatures -- 6.6.5 Flat heat pipes within refrigeration -- 6.7 Heat pipe units for waste management -- 6.8 Heat pipe heat exchangers in thermal energy storage -- 6.9 Other applications and case studies -- 6.9.1 Variable conductance heat pipe for automotive thermal management -- 6.9.2 Heat pipe radiator unit for space nuclear power reactor -- 6.9.3 Hybrid heat pipes for nuclear applications -- 6.9.4 Hybrid pump-assisted loop heat pipe -- 6.10 Concluding remarks -- References. , 7 Cooling of electronic components.
    Additional Edition: Print version: Jouhara, Hussam Heat Pipes San Diego : Elsevier Science & Technology,c2023 ISBN 9780128234648
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9780128238608?
Did you mean 9780128224618?
Did you mean 9780128233658?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages