Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Die Antwortzeit im Portal kann derzeit länger als üblich sein. Wir bitten um Entschuldigung.
Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
  • 1
    Online Resource
    Online Resource
    Oxford, England :Elsevier Ltd.,
    UID:
    almatuudk_9923226545902884
    Format: 1 online resource (353 pages)
    Edition: Seventh edition.
    ISBN: 0-12-823465-2
    Note: Front Cover -- Heat Pipes -- Copyright Page -- Contents -- About the authors -- Preface -- Acknowledgements -- Nomenclature -- Introduction -- 1 The heat pipe construction, performance and properties -- 2 The development of the heat pipe -- 3 The contents of this book -- References -- 1 Historical development -- 1.1 The Perkins tube -- 1.2 Patents -- 1.3 The baker's oven -- 1.4 The heat pipe -- 1.5 Can heat pipes address our future thermal? -- 1.6 Electrokinetics -- 1.7 Fluids and materials -- 1.8 The future? -- References -- 2 Heat pipe types and developments -- 2.1 Variable-conductance heat pipes -- 2.1.1 Passive control using bellows -- 2.1.2 Hot-reservoir variable-conductance heat pipes -- 2.1.3 Feedback control applied to the variable-conductance heat pipe -- 2.1.3.1 Electrical feedback control (active) -- 2.1.3.2 Mechanical feedback control (passive) -- 2.1.3.3 Comparison of systems -- 2.2 Heat pipe thermal diodes and switches -- 2.2.1 The thermal diode -- 2.2.2 The heat pipe switch -- 2.3 Pulsating (oscillating) heat pipes -- 2.4 Loop heat pipes and capillary-pumped loops -- 2.4.1 Thermosyphon loops -- 2.5 Microheat pipes -- 2.6 Use of electrokinetic forces -- 2.6.1 Electrokinetics -- 2.6.2 Electrohydrodynamics -- 2.6.3 Optomicrofluidics -- 2.7 Rotating heat pipes -- 2.7.1 Factors limiting the heat transfer capacity of the rotating heat pipe -- 2.7.2 Applications of rotating heat pipes -- 2.7.3 Microrotating heat pipes -- 2.8 Miscellaneous types -- 2.8.1 The sorption heat pipe -- 2.8.2 Magnetic fluid heat pipes -- References -- 3 Heat pipe materials, manufacturing and testing -- 3.1 The working fluid -- 3.1.1 Nanofluids -- 3.2 The wick or capillary structure -- 3.2.1 Homogeneous structures -- 3.2.2 Arterial wicks -- 3.3 Thermal resistance of saturated wicks -- 3.3.1 Meshes -- 3.3.2 Sintered wicks -- 3.3.3 Grooved wicks. , 3.3.4 Concentric annulus -- 3.3.5 Sintered metal fibres -- 3.3.6 Ceramic wick structures -- 3.4 The container -- 3.5 Compatibility -- 3.5.1 Historic compatibility data -- 3.5.2 Compatibility of water and steel - a discussion -- 3.5.2.1 The mechanism of hydrogen generation and protective layer formation -- 3.5.2.2 Work specifically related to passivation of mild steel -- 3.5.2.3 Use of an inhibitor -- 3.5.2.4 Production of a protective layer -- 3.5.2.5 Pipes with both inhibitor and oxide layer -- 3.5.2.6 Comments on the water-steel data -- 3.6 How about water and aluminium? -- 3.7 Heat pipe start-up procedure -- 3.8 Heat pipe manufacture and testing -- 3.8.1 Manufacture and assembly -- 3.8.1.1 Container materials -- 3.8.2 Wick materials and form -- 3.8.2.1 Wire mesh -- 3.8.2.2 Sintering -- 3.8.2.3 Vapour deposition -- 3.8.2.4 Microlithography and other techniques -- 3.8.2.5 Grooves -- 3.8.2.6 Felts and foams -- 3.8.3 Cleaning of container and wick -- 3.8.4 Material outgassing -- 3.8.5 Fitting of wick and end caps -- 3.8.6 Leak detection -- 3.8.7 Preparation of the working fluid -- 3.8.8 Heat pipe filling -- 3.8.8.1 Description of rig -- 3.8.8.2 Procedure for filling a heat pipe -- 3.8.9 Heat pipe sealing -- 3.8.10 Summary of assembly procedures -- 3.8.11 Heat pipes containing inert gas -- 3.8.11.1 Diffusion at the vapour/gas interface -- 3.8.11.2 Gas bubbles in arterial wick structures -- 3.8.12 Liquid-metal heat pipes -- 3.8.13 Liquid-metal heat pipes for the temperature range 500°C-1100°C -- 3.8.13.1 Cleaning and filling -- 3.8.13.2 Sealing -- 3.8.13.3 Operation -- 3.8.13.4 High-temperature liquid-metal heat pipes > -- 1200°C -- 3.8.13.5 Gettering -- 3.8.14 Safety aspects -- 3.8.15 3D-printed heat pipes -- 3.9 Heat pipe life-test procedures -- 3.9.1 Variables to be taken into account during life tests -- 3.9.1.1 The working fluid. , 3.9.1.2 The heat pipe wall -- 3.9.1.3 The wick -- 3.9.2 Life test procedures -- 3.9.2.1 Effect of heat flux -- 3.9.2.2 Effect of temperature -- 3.9.2.3 Compatibility -- 3.9.2.4 Other factors -- 3.9.3 Prediction of long-term performance from accelerated life tests -- 3.9.4 A life test programme -- 3.9.5 Spacecraft qualification plan -- 3.10 Heat pipe performance measurements (see also Section 3.9) -- 3.10.1 The test rig -- 3.10.2 Test procedures -- 3.10.3 Evaluation of a copper heat pipe and typical performance -- 3.10.3.1 Capabilities -- 3.10.3.2 Test procedure -- 3.10.3.3 Test results -- 3.10.3.4 Tests on thermosyphons to compare working fluids -- References -- 4 Heat transfer and fluid flow theory -- 4.1 Introduction -- 4.2 Operation of heat pipes -- 4.2.1 Wicked heat pipes -- 4.2.2 Thermosyphons -- 4.2.3 Loop heat pipes and capillary-pumped loops -- 4.3 Theoretical background -- 4.3.1 Gravitational head -- 4.3.2 Surface tension and capillarity -- 4.3.2.1 Introduction -- 4.3.2.2 Pressure difference across a curved surface -- 4.3.2.3 Change in vapour pressure at a curved liquid surface -- 4.3.2.4 Measurement of surface tension -- 4.3.2.5 Temperature dependence of surface tension -- 4.3.2.6 Capillary pressure ΔPc -- 4.3.3 Pressure difference due to friction forces -- 4.3.3.1 Laminar and turbulent flow -- 4.3.3.2 Laminar flow - the Hagen-Poiseuille equation -- 4.3.3.3 Turbulent flow - the Fanning equation -- 4.3.4 Flow in Wicks -- 4.3.4.1 Pressure difference in the liquid phase -- 4.3.4.2 Homogeneous wicks -- 4.3.4.3 Nonhomogeneous wicks -- 4.3.5 Vapour phase pressure difference, ΔPv -- 4.3.5.1 Introduction -- 4.3.5.2 Incompressible flow: (simple one-dimensional theory) -- 4.3.5.3 Incompressible flow: one-dimensional theories of Cotter and Busse -- 4.3.5.4 Pressure recovery -- 4.3.5.5 Two-dimensional incompressible flow -- 4.3.5.6 Compressible flow. , 4.3.5.7 Summary of vapour flow -- 4.3.6 Entrainment -- 4.3.7 Heat transfer and temperature difference -- 4.3.7.1 Introduction -- 4.3.7.2 Heat transfer in the evaporator region -- 4.3.7.3 Boiling heat transfer from plane surfaces -- 4.3.7.3.1 Bubble dynamic -- 4.3.7.3.2 Boiling curve -- 4.3.7.3.3 Pool-boiling heat transfer correlations -- 4.3.7.3.4 Burnout correlations -- 4.3.7.4 Boiling from wicked surfaces -- 4.3.7.5 Liquid-vapour interface temperature drop -- 4.3.7.6 Wick thermal conductivity -- 4.3.7.7 Heat transfer in the condenser -- 4.3.7.7.1 Nusselt's theory -- 4.3.7.7.2 Condensation heat transfer correlations -- 4.4 Application of theory to heat pipes and thermosyphons -- 4.4.1 Wicked heat pipes -- 4.4.1.1 The merit number -- 4.4.1.2 Operating limits -- 4.4.1.2.1 Viscous, or vapour pressure, limit -- 4.4.1.2.2 Sonic limit -- 4.4.1.2.3 Entrainment limit -- 4.4.1.2.4 Capillary limit (wicking limit) -- 4.4.1.3 Burnout -- 4.4.1.4 Gravity-assisted heat pipes -- 4.4.1.5 Total temperature drop -- 4.4.2 Thermosyphons -- 4.4.2.1 Working fluid selection -- 4.4.2.2 Entrainment limit -- 4.4.2.3 Thermal resistance and maximum heat flux -- 4.5 Nanofluids -- 4.6 Design guide -- 4.6.1 Introduction -- 4.6.2 Heat pipes -- 4.6.2.1 Fluid inventory -- 4.6.2.2 Priming -- 4.6.3 Design example 1 -- 4.6.3.1 Specification -- 4.6.3.2 Selection of materials and working fluid -- 4.6.3.2.1 Sonic limit -- 4.6.3.2.2 Entrainment limit -- 4.6.3.2.3 Wicking limit -- 4.6.3.2.4 Radial heat flux -- 4.6.3.2.5 Priming of the wick -- 4.6.3.2.6 Wall thickness -- 4.6.3.2.7 Conclusions on selection of working fluid -- 4.6.3.3 Detail design -- 4.6.3.3.1 Wick selection -- 4.6.3.3.2 Arterial diameter -- 4.6.3.3.3 Circumferential liquid distribution and temperature difference -- 4.6.3.3.4 Arterial wick -- 4.6.3.3.5 Final analysis -- 4.6.4 Design example 2 -- 4.6.4.1 Problem. , 4.6.4.2 Solution - original design -- 4.6.4.3 Solution - revised design -- 4.6.5 Thermosyphons -- 4.6.5.1 Fluid inventory -- 4.6.5.2 Entrainment limit -- 4.7 Summary -- References -- 5 Additive manufacturing applied to heat pipes -- 5.1 Introduction -- 5.2 Additive manufacturing considerations for heat pipes -- 5.3 State of the art -- 5.3.1 Additive manufacturing wick and heat pipe developments -- 5.3.2 Commercial examples -- 5.3.3 3D printed versus conventional wicks -- 5.4 Opportunities for additive manufacturing -- 5.4.1 Alternative lattice geometries -- 5.4.2 Evaporator section considerations -- 5.4.3 Condenser section considerations -- 5.4.4 Whole heat pipe and miscellaneous considerations -- 5.5 General challenges areas for heat pipes -- 5.6 Summary and outlook -- References -- 6 Heat pipe heat exchangers -- 6.1 Introduction -- 6.2 Heat pipe heat exchangers in buildings -- 6.3 Heat pipe heat exchangers in food processing -- 6.4 Heat pipe heat exchangers for the ceramics sector -- 6.4.1 Cross-flow heat pipe heat exchanger -- 6.4.2 Radiative heat pipe heat exchanger -- 6.4.3 Multipass heat pipe heat exchanger -- 6.5 Heat pipe heat exchangers waste heat boiler -- 6.6 Flat heat pipe heat exchangers -- 6.6.1 Flat heat pipes for solar applications -- 6.6.2 Heat pipe thermal collector -- 6.6.3 Battery thermal management using heat mat -- 6.6.4 Flat heat pipe for high temperatures -- 6.6.5 Flat heat pipes within refrigeration -- 6.7 Heat pipe units for waste management -- 6.8 Heat pipe heat exchangers in thermal energy storage -- 6.9 Other applications and case studies -- 6.9.1 Variable conductance heat pipe for automotive thermal management -- 6.9.2 Heat pipe radiator unit for space nuclear power reactor -- 6.9.3 Hybrid heat pipes for nuclear applications -- 6.9.4 Hybrid pump-assisted loop heat pipe -- 6.10 Concluding remarks -- References. , 7 Cooling of electronic components.
    Additional Edition: Print version: Jouhara, Hussam Heat Pipes San Diego : Elsevier Science & Technology,c2023 ISBN 9780128234648
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9780128034644?
Did you mean 9780128134641?
Did you mean 9780128036648?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages