Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge : The MIT Press | Cambridge, Massachusetts :MIT Press, | [Piscataqay, New Jersey] :IEEE Xplore,
    UID:
    almafu_9960408181402883
    Format: 1 online resource (544 p.)
    Edition: 1st ed.
    ISBN: 0-262-30039-7 , 1-280-67835-6 , 9786613655288 , 0-262-30118-0
    Series Statement: Adaptive computation and machine learning series
    Content: Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate "rules of thumb." A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical.This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout.
    Note: Bibliographic Level Mode of Issuance: Monograph , Foundations of machine learning -- Using AdaBoost to minimize training error -- Direct bounds on the generalization error -- The margins explanation for boosting's effectiveness -- Game theory, online learning, and boosting -- Loss minimization and generalizations of boosting -- Boosting, convex optimization, and information geometry -- Using confidence-rated weak predictions -- Multiclass classification problems -- Learning to rank -- Attaining the best possible accuracy -- Optimally efficient boosting -- Boosting in continuous time. , Also available in print. , English
    Additional Edition: ISBN 0-262-52603-4
    Additional Edition: ISBN 0-262-01718-0
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Book
    Book
    Cambridge, MA [u.a.] :MIT Press,
    UID:
    almafu_BV040551719
    Format: XV, 526 S. : , Ill., graph. Darst.
    ISBN: 978-0-262-01718-3 , 978-0-262-52603-6
    Series Statement: Adaptive computation and machine learning
    Note: Includes bibliographical references and index
    Additional Edition: Erscheint auch als Online-Ausgabe ISBN 978-0-262-30118-3
    Additional Edition: ISBN 0-262-30118-0
    Language: English
    Subjects: Computer Science
    RVK:
    RVK:
    RVK:
    Keywords: Boosting ; Maschinelles Lernen ; Teilüberwachtes Lernen ; Lehrbuch ; Lehrbuch ; Lehrbuch ; Lehrbuch
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cambridge, MA :MIT Press,
    UID:
    almafu_BV042509038
    Format: 1 Online-Ressource (xv, 526 Seiten) : , Illustrationen, Diagramme.
    ISBN: 978-0-262-30118-3 , 0-262-30118-0 , 978-0-262-01718-3 , 0-262-01718-0
    Series Statement: Adaptive computation and machine learning
    Note: Includes bibliographical references and index
    Additional Edition: Erscheint auch als Druck-Ausgabe, Hardcover ISBN 978-0-262-01718-3
    Additional Edition: Erscheint auch als Druck-Ausgabe, Paperback ISBN 978-0-262-52603-6
    Language: English
    Subjects: Computer Science
    RVK:
    RVK:
    RVK:
    Keywords: Boosting ; Maschinelles Lernen ; Teilüberwachtes Lernen ; Lehrbuch ; Lehrbuch ; Lehrbuch ; Lehrbuch
    URL: Volltext  (kostenfrei)
    URL: Volltext  (kostenfrei)
    URL: Volltext  (kostenfrei)
    URL: Volltext  (kostenfrei)
    URL: Volltext  (kostenfrei)
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Book
    Book
    Cambridge, Massachusetts ; London :The MIT Press,
    UID:
    almafu_BV048991920
    Format: xv, 526 Seiten : , Illustrationen, Diagramme.
    Edition: First MIT Press paperback edition
    ISBN: 978-0-262-52603-6 , 978-0-262-01718-3
    Series Statement: Adaptive computation and machine learning
    Note: Literaturverzeichnis: Seite [501]-510
    Language: English
    Subjects: Computer Science
    RVK:
    RVK:
    RVK:
    RVK:
    RVK:
    Keywords: Boosting ; Maschinelles Lernen ; Maschinelles Lernen ; Teilüberwachtes Lernen ; Boosting ; Lehrbuch
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cambridge, Mass. :MIT Press,
    UID:
    almahu_9948323204902882
    Format: xv, 526 p. : , ill.
    Edition: Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
    Series Statement: Adaptive computation and machine learning
    Language: English
    Keywords: Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9780262017138?
Did you mean 9780262014083?
Did you mean 9780262014113?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages