Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
Fachgebiete(RVK)
  • 1
    Online-Ressource
    Online-Ressource
    Cambridge, Mass. :MIT Press,
    UID:
    almafu_9959234141602883
    Umfang: 1 PDF (xii, 396 pages) : , illustrations.
    ISBN: 9780262255790 , 0262255790
    Serie: Neural information processing series
    Inhalt: Pervasive and networked computers have dramatically reduced the cost of collecting and distributing large datasets. In this context, machine learning algorithms that scale poorly could simply become irrelevant. We need learning algorithms that scale linearly with the volume of the data while maintaining enough statistical efficiency to outperform algorithms that simply process a random subset of the data. This volume offers researchers and engineers practical solutions for learning from large scale datasets, with detailed descriptions of algorithms and experiments carried out on realistically large datasets. At the same time it offers researchers information that can address the relative lack of theoretical grounding for many useful algorithms. After a detailed description of state-of-the-art support vector machine technology, an introduction of the essential concepts discussed in the volume, and a comparison of primal and dual optimization techniques, the book progresses from well-understood techniques to more novel and controversial approaches. Many contributors have made their code and data available online for further experimentation. Topics covered include fast implementations of known algorithms, approximations that are amenable to theoretical guarantees, and algorithms that perform well in practice but are difficult to analyze theoretically.ContributorsLǒn Bottou, Yoshua Bengio, Stp̌hane Canu, Eric Cosatto, Olivier Chapelle, Ronan Collobert, Dennis DeCoste, Ramani Duraiswami, Igor Durdanovic, Hans-Peter Graf, Arthur Gretton, Patrick Haffner, Stefanie Jegelka, Stephan Kanthak, S. Sathiya Keerthi, Yann LeCun, Chih-Jen Lin, Galale Loosli, Joaquin Quiǫnero-Candela, Carl Edward Rasmussen, Gunnar Rt̃sch, Vikas Chandrakant Raykar, Konrad Rieck, Vikas Sindhwani, Fabian Sinz, Sr̲en Sonnenburg, Jason Weston, Christopher K. I. Williams, Elad Yom-TovLǒn Bottou is a Research Scientist at NEC Labs America. Olivier Chapelle is with Yahoo! Research. He is editor of Semi-Supervised Learning (MIT Press, 2006). Dennis DeCoste is with Microsoft Research. Jason Weston is a Research Scientist at NEC Labs America.
    Anmerkung: Bibliographic Level Mode of Issuance: Monograph , Also available in print. , English
    Weitere Ausg.: ISBN 9780262026253
    Weitere Ausg.: ISBN 0262026252
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Buch
    Buch
    Cambridge, Mass. [u.a.] : MIT Press
    UID:
    b3kat_BV023224338
    Umfang: xii, 396 p. , ill. , 26 cm
    ISBN: 9780262026253 , 0262026252
    Serie: Neural information processing series
    Anmerkung: Includes bibliographical references (p. [361]-387) and index
    Sprache: Englisch
    Fachgebiete: Informatik
    RVK:
    Schlagwort(e): Maschinelles Lernen ; Support-Vektor-Maschine
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780262024259?
Meinten Sie 9780262026123?
Meinten Sie 9780262026208?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz