Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Buch
    Buch
    Cambridge, Massachusetts ; London, England :The MIT Press,
    UID:
    almahu_BV044717747
    Umfang: xiv, 265 Seiten : , Illustrationen, Diagramme.
    ISBN: 978-0-262-03731-0
    Serie: Adaptive computation and machine learning
    Anmerkung: Includes bibliographical references and index
    Sprache: Englisch
    Fachgebiete: Informatik , Wirtschaftswissenschaften
    RVK:
    RVK:
    Schlagwort(e): Kausalität ; Maschinelles Lernen
    URL: Volltext  (kostenfrei)
    URL: Cover
    URL: Volltext  (kostenfrei)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cambridge, Massachuestts :The MIT Press,
    UID:
    almafu_9959002764802883
    Umfang: 1 online resource (288)
    ISBN: 9780262364690 , 0262364697 , 9780262037310 , 0262037319
    Serie: Adaptive computation and machine learning series
    Inhalt: A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning.The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.
    Anmerkung: English.
    Weitere Ausg.: ISBN 9780262344296
    Weitere Ausg.: ISBN 0262344297
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    gbv_1822189349
    Umfang: 1 Online-Ressource (xiv, 265 Seiten)
    ISBN: 9780262037310
    Serie: Adaptive Computation and Machine Learning series
    Inhalt: A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning.The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts
    Anmerkung: English
    Weitere Ausg.: ISBN 9780262037310
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe Peters, Jonas, 1984 - Elements of causal inference Cambridge, Massachusetts : The MIT Press, 2017 ISBN 9780262037310
    Sprache: Englisch
    Fachgebiete: Informatik
    RVK:
    Schlagwort(e): Kausalität ; Maschinelles Lernen ; Algorithmus ; Inferenzstatistik
    URL: Volltext  (OAPEN Library: download the publication)
    URL: Volltext  (OAPEN Library: description of the publication)
    Mehr zum Autor: Janzing, Dominik 1966-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780252037320?
Meinten Sie 9780252038310?
Meinten Sie 9780252037313?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz