Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1
    Online-Ressource
    Online-Ressource
    Cambridge, Mass. :MIT Press,
    UID:
    almafu_9958073185402883
    Umfang: 1 online resource (xv, 222 p. ) , ill. ;
    ISBN: 0-262-27396-9 , 0-585-47544-X
    Inhalt: In recent years, small groups of statisticians, computer scientists, and philosophers have developed an account of how partial causal knowledge can be used to compute the effect of actions and how causal relations can be learned, at least by computers. The representations used in the emerging theory are causal Bayes nets or graphical causal models. In his new book, Clark Glymour provides an informal introduction to the basic assumptions, algorithms, and techniques of causal Bayes nets and graphical causal models in the context of psychological examples. He demonstrates their potential as a powerful tool for guiding experimental inquiry and for interpreting results in developmental psychology, cognitive neuropsychology, psychometrics, social psychology, and studies of adult judgment. Using Bayes net techniques, Glymour suggests novel experiments to distinguish among theories of human causal learning and reanalyzes various experimental results that have been interpreted or misinterpreted - without the benefit of Bayes nets and graphical causal models. The capstone illustration is an analysis of the methods used in Herrnstein and Murray's book The Bell Curve ; Glymour argues that new, more reliable methods of data analysis, based on Bayes nets representations, would lead to very different conclusions from those advocated by Herrnstein and Murray.
    Anmerkung: "A Bradford book." , Introduction -- , Android epistemology for babies -- , Another way for nerds to make babies : the frame problem and causal inference in developmental psychology -- , A puzzling experiment -- , The puzzle resolved -- , Marilyn vos Savant meets Rescorla and Wagner -- , Cheng models -- , Learning procedures -- , Representation and rationality : the case of backward blocking -- , Cognitive parts : from Freud to Farah -- , Inference to cognitive architecture from individual case studies -- , Group data in cognitive neuropsychology -- , The explanatory power of lesioning neural nets -- , Social statistics and genuine inquiry : the case of The bell curve. , English
    Weitere Ausg.: ISBN 0-262-07220-3
    Sprache: Englisch
    Schlagwort(e): Electronic books. ; Electronic books
    URL: Full text  (Click to View (Currently Only Available on Campus))
    URL: Volltext  (Deutschlandweit zugänglich)
    URL: Volltext  (Deutschlandweit zugänglich)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cambridge, Mass : MIT Press
    UID:
    gbv_174333088X
    Umfang: 1 online resource (xv, 222 pages) , illustrations.
    ISBN: 9780262273961 , 0262273969 , 9780262318730 , 0262318733 , 9780262072205 , 0262072203 , 058547544X , 9780585475448
    Serie: Bradford Bks
    Inhalt: In recent years, small groups of statisticians, computer scientists, and philosophers have developed an account of how partial causal knowledge can be used to compute the effect of actions and how causal relations can be learned, at least by computers. The representations used in the emerging theory are causal Bayes nets or graphical causal models. In his new book, Clark Glymour provides an informal introduction to the basic assumptions, algorithms, and techniques of causal Bayes nets and graphical causal models in the context of psychological examples. He demonstrates their potential as a powerful tool for guiding experimental inquiry and for interpreting results in developmental psychology, cognitive neuropsychology, psychometrics, social psychology, and studies of adult judgment. Using Bayes net techniques, Glymour suggests novel experiments to distinguish among theories of human causal learning and reanalyzes various experimental results that have been interpreted or misinterpreted - without the benefit of Bayes nets and graphical causal models. The capstone illustration is an analysis of the methods used in Herrnstein and Murray's book The Bell Curve ; Glymour argues that new, more reliable methods of data analysis, based on Bayes nets representations, would lead to very different conclusions from those advocated by Herrnstein and Murray.
    Anmerkung: "A Bradford book.". - OCLC-licensed vendor bibliographic record
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780262273916?
Meinten Sie 9780262272391?
Meinten Sie 9780262271967?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz