Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Cambridge, Massachusetts :The MIT Press,
    UID:
    almafu_9959231800802883
    Umfang: 1 online resource (ix, 476 pages) : , illustrations.
    ISBN: 0-262-27718-2 , 0-585-04844-4 , 9780262277181
    Serie: Complex adaptive systems
    Inhalt: There is increasing interest in genetic programming by both researchers and professional software developers. These twenty-two invited contributions show how a wide variety of problems across disciplines can be solved using this new paradigm.There is increasing interest in genetic programming by both researchers and professional software developers. These twenty-two invited contributions show how a wide variety of problems across disciplines can be solved using this new paradigm.Advances in Genetic Programming reports significant results in improving the power of genetic programming, presenting techniques that can be employed immediately in the solution of complex problems in many areas, including machine learning and the simulation of autonomous behavior. Popular languages such as C and C++ are used in many of the applications and experiments, illustrating how genetic programming is not restricted to symbolic computing languages such as LISP. Researchers interested in getting started in genetic programming will find information on how to begin, on what public domain code is available, and on how to become part of the active genetic programming community via electronic mail.A major focus of the book is on improving the power of genetic programming. Experimental results are presented in a variety of areas, including adding memory to genetic programming, using locality and "demes" to maintain evolutionary diversity, avoiding the traps of local optima by using coevolution, using noise to increase generality, and limiting the size of evolved solutions to improve generality.Significant theoretical results in the understanding of the processes underlying genetic programming are presented, as are several results in the area of automatic function definition. Performance increases are demonstrated by directly evolving machine code, and implementation and design issues for genetic programming in C++ are discussed.
    Anmerkung: "A Bradford book." , Available through MITCogNet. , A perspective on the work in this book / Kenneth E. Kinnear, Jr. -- Introduction to genetic programming / John R. Koza -- The evolution of evolvability in genetic programming / Lee Altenberg -- Genetic programming and emergent intelligence / Peter J. Angeline -- Scalable learning in genetic programming using automatic function definition / John R. Koza -- Alternatives in automatic function definition: a comparison of performance / Kenneth E. Kinnear, Jr. -- The donut problem: scalability, generalization and breeding policies in genetic programming / Walter Alden Tackett, Aviram Carmi -- Effects of locality in individual and population evolution / Patrik D'haeseleer, Jason Bluming -- The evolution of mental models / Astro Teller -- Evolution of obstacle avoidance behavior: using noise to promote robust solutions / Craig W. Reynolds -- Pygmies and civil servants / Conor Ryan -- Genetic programming using a minimum decsription length principle / Hitoshi Iba, Hugo de Garis, Taisuke Sato -- Genetic programming in C++: implementation issues / Mike J. Keith, Martin C. Martin. A compiling genetic programming system that directly manipulates the machine code / Peter Nordin -- Automatic generation of programs for crawling and walking / Graham Spencer -- Genetic programming for the acquisition of double auction market strategies / Martin Andrews, Richard Prager -- Two scientific applications of genetic programming: stack filters and non-linear equation fitting to chaotic data / Howard Oakley -- The automatic generation of plans for a mobile robot via genetic programming with automatically defined functions / Simon G. Handley -- Competitively evolving decision trees against fixed training cases for natural language processing / Eric V. Siegel -- Cracking and co-evolving randomizers / Jan Jannink -- Optimizing confidence of text classification by evolution of symbolic expressions / Brij Masand -- Evolvable 3D modeling for model-based object recognition systems / Thang Nguyen, Thomas Huang. Automatically defined features: the simultaneous evolution of 2-dimensional feature detectors and an algorithm for using them / David Andre -- Genetic micro programming of neural networks / Frédéric Gruau. , English
    Weitere Ausg.: ISBN 0-262-51553-9
    Weitere Ausg.: ISBN 0-262-11188-8
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cambridge, Massachusetts : The MIT Press
    UID:
    gbv_174333236X
    Umfang: 1 online resource (ix, 476 pages) , illustrations.
    ISBN: 9780262277181 , 0262277182
    Serie: Complex adaptive systems
    Inhalt: There is increasing interest in genetic programming by both researchers and professional software developers. These twenty-two invited contributions show how a wide variety of problems across disciplines can be solved using this new paradigm.There is increasing interest in genetic programming by both researchers and professional software developers. These twenty-two invited contributions show how a wide variety of problems across disciplines can be solved using this new paradigm.Advances in Genetic Programming reports significant results in improving the power of genetic programming, presenting techniques that can be employed immediately in the solution of complex problems in many areas, including machine learning and the simulation of autonomous behavior. Popular languages such as C and C++ are used in many of the applications and experiments, illustrating how genetic programming is not restricted to symbolic computing languages such as LISP. Researchers interested in getting started in genetic programming will find information on how to begin, on what public domain code is available, and on how to become part of the active genetic programming community via electronic mail.A major focus of the book is on improving the power of genetic programming. Experimental results are presented in a variety of areas, including adding memory to genetic programming, using locality and "demes" to maintain evolutionary diversity, avoiding the traps of local optima by using coevolution, using noise to increase generality, and limiting the size of evolved solutions to improve generality.Significant theoretical results in the understanding of the processes underlying genetic programming are presented, as are several results in the area of automatic function definition. Performance increases are demonstrated by directly evolving machine code, and implementation and design issues for genetic programming in C++ are discussed.
    Weitere Ausg.: ISBN 9780262111881
    Weitere Ausg.: ISBN 0262111888
    Weitere Ausg.: ISBN 9780262515535
    Weitere Ausg.: ISBN 0262515539
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780226257181?
Meinten Sie 9780262267151?
Meinten Sie 9780262267281?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz