Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    gbv_1029282765
    Umfang: xiii, 337 Seiten , Illustrationen, Diagramme
    ISBN: 9780262038829
    Serie: Strüngmann Forum reports
    Anmerkung: Literaturverzeichnis: Seite 305-331
    Weitere Ausg.: Erscheint auch als Online-Ausgabe Interactive task learning Cambridge, Massachusetts : The MIT Press, 2018 ISBN 9780262038829
    Weitere Ausg.: Erscheint auch als Online-Ausgabe Interactive task learning Cambridge, Massachusetts : The MIT Press, 2018 ISBN 9780262349420
    Weitere Ausg.: Erscheint auch als Online-Ausgabe Ernst Strüngmann Forum (26. : 2017 : Frankfurt am Main) Interactive task learning Cambridge : The MIT Press, 2018 ISBN 9780262349420
    Weitere Ausg.: ISBN 0262349426
    Sprache: Englisch
    Schlagwort(e): Mensch-Maschine-Kommunikation ; Lernendes System ; Konferenzschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    almafu_9960950864402883
    Umfang: 1 online resource (355 pages).
    ISBN: 9780262349420 , 0262349426
    Serie: Strüngmann Forum reports
    Inhalt: Experts from a range of disciplines explore how humans and artificial agents can quickly learn completely new tasks through natural interactions with each other. Humans are not limited to a fixed set of innate or preprogrammed tasks. We learn quickly through language and other forms of natural interaction, and we improve our performance and teach others what we have learned. Understanding the mechanisms that underlie the acquisition of new tasks through natural interaction is an ongoing challenge. Advances in artificial intelligence, cognitive science, and robotics are leading us to future systems with human-like capabilities. A huge gap exists, however, between the highly specialized niche capabilities of current machine learning systems and the generality, flexibility, and in situ robustness of human instruction and learning. Drawing on expertise from multiple disciplines, this Strüngmann Forum Report explores how humans and artificial agents can quickly learn completely new tasks through natural interactions with each other. The contributors consider functional knowledge requirements, the ontology of interactive task learning, and the representation of task knowledge at multiple levels of abstraction. They explore natural forms of interactions among humans as well as the use of interaction to teach robots and software agents new tasks in complex, dynamic environments. They discuss research challenges and opportunities, including ethical considerations, and make proposals to further understanding of interactive task learning and create new capabilities in assistive robotics, healthcare, education, training, and gaming.
    Weitere Ausg.: ISBN 9780262038829
    Weitere Ausg.: ISBN 026203882X
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    gbv_1743308841
    Umfang: 1 Online-Ressource (xiii, 337 Seiten) , Illustrationen
    ISBN: 9780262349420 , 0262349426
    Serie: Strüngmann Forum reports
    Inhalt: Experts from a range of disciplines explore how humans and artificial agents can quickly learn completely new tasks through natural interactions with each other. Humans are not limited to a fixed set of innate or preprogrammed tasks. We learn quickly through language and other forms of natural interaction, and we improve our performance and teach others what we have learned. Understanding the mechanisms that underlie the acquisition of new tasks through natural interaction is an ongoing challenge. Advances in artificial intelligence, cognitive science, and robotics are leading us to future systems with human-like capabilities. A huge gap exists, however, between the highly specialized niche capabilities of current machine learning systems and the generality, flexibility, and in situ robustness of human instruction and learning. Drawing on expertise from multiple disciplines, this Strüngmann Forum Report explores how humans and artificial agents can quickly learn completely new tasks through natural interactions with each other. The contributors consider functional knowledge requirements, the ontology of interactive task learning, and the representation of task knowledge at multiple levels of abstraction. They explore natural forms of interactions among humans as well as the use of interaction to teach robots and software agents new tasks in complex, dynamic environments. They discuss research challenges and opportunities, including ethical considerations, and make proposals to further understanding of interactive task learning and create new capabilities in assistive robotics, healthcare, education, training, and gaming.
    Weitere Ausg.: ISBN 9780262033829
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe Ernst Strüngmann Forum (26. : 2017 : Frankfurt am Main) Interactive task learning Cambridge, Massachusetts : The MIT Press, 2018 ISBN 9780262038829
    Sprache: Englisch
    Schlagwort(e): Mensch-Maschine-Kommunikation ; Lernendes System ; Konferenzschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780262319430?
Meinten Sie 9780262344470?
Meinten Sie 9780226349480?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz