UID:
almahu_9949982479102882
Umfang:
1 online resource (604 pages)
ISBN:
9780323852944
,
0323852947
Serie:
Micro and Nano Technologies
Inhalt:
"Multifunctional Nanocarriers provides information on the concept, theory and application of multifunctional nanocarriers. The book covers current research, beginning with product strategy, targeted drug delivery, and advanced drug delivery approaches, along with numerous multifunctional nanocarriers and their regulatory considerations for product development. The book covers targeting, receptor mediated targeting, and recent advancements using multifunctional nanocarriers and their regulatory aspects. This is an important reference source for materials scientists and engineers who want to learn more about how multifunctional nanocarriers are applied in a range of biomedical applications."--
Anmerkung:
Front Cover -- MULTIFUNCTIONAL NANOCARRIERS -- MULTIFUNCTIONAL NANOCARRIERS -- Copyright -- Contents -- Contributors -- Editors -- Preface -- 1 - Nanotechnology: advanced drug-targeting concepts, fundamentals, and strategies -- 1. Introduction -- 2. Approaches for drug targeting -- 2.1 Passive targeting -- 2.2 Active targeting -- 2.2.1 First-order targeting (organ level) -- 2.2.1.1 Drug delivery to the brain -- 2.2.1.2 Drug delivery to lungs -- 2.2.1.2.1 Approaches for pulmonary targeting -- 2.2.1.3 Drug delivery to liver -- 2.2.1.3.1 Approaches for liver targeting -- 2.2.1.3.1.1 Carbohydrate (glycoprotein) receptor-mediated delivery -- 2.2.1.3.1.2 Asialoglycoprotein receptor-mediated delivery -- 2.2.1.3.1.3 Galactose/fucose-specific receptor-mediated delivery -- 2.2.1.3.1.4 Mannose/N-acetylglucosamine receptor-mediated delivery -- 2.2.1.3.1.5 Scavenger receptor-mediated delivery -- 2.2.1.3.1.6 Complement or Fc receptor-mediated delivery -- 2.2.1.3.1.7 LDL receptor-mediated delivery -- 2.2.2 Second-order targeting (cellular targeting) -- 2.2.2.1 Monoclonal antibodies/antibody fragments -- 2.2.2.2 Aptamers -- 2.2.2.3 Peptides -- 2.2.2.4 Folates (RKT) -- 2.2.2.5 Lectins -- 2.2.2.6 Transferrin -- 2.2.2.7 Mannose derivatives -- 2.2.2.7.1 ADEPT (antigen directed enzyme-linked prodrug therapy) -- 2.2.3 Third-order targeting (subcellular/intracellular targeting) -- 2.2.3.1 Endocytosis-based drug delivery -- 2.3 Inverse targeting -- 2.4 Dual targeting -- 2.5 Double targeting -- 2.6 Prodrug approach -- 2.6.1 ADEPT (antibody directed enzyme-linked prodrug therapy) -- 2.6.2 VDEPT (viral directed enzyme-linked prodrug therapy) -- 2.6.3 GDEPT (gene directed enzyme-linked prodrug therapy) -- 3. Fundamental strategies for drug delivery systems -- 3.1 Organic nanocarriers -- 3.1.1 Vesicular carriers -- 3.1.2 Polymeric nanoparticles -- 3.1.3 Lipid nanoparticles.
,
3.1.4 Polymeric micelles -- 3.1.5 Dendrimers -- 3.1.6 Viral nanoparticles -- 3.2 Inorganic nanoparticles -- 3.3 Hybrid nanoparticles -- 3.4 Stimuli-responsive target strategies -- 3.4.1 pH-sensitive drug delivery systems -- 3.4.2 Temperature-sensitive drug delivery system -- 3.4.3 Redox-sensitive drug delivery systems -- 3.4.4 Magnetic sensitive drug delivery system -- 3.4.5 Ultrasound-sensitive drug delivery systems -- 3.4.6 Photosensitive drug delivery systems -- 4. Conclusion and future perspectives -- Acknowledgment -- References -- 1 - Multifunctional nanocarriers -- 2 - Recent advances in dendrimer-based nanocarriers -- 1. Introduction -- 2. Advantages of dendrimers -- 3. Types of dendrimers -- 3.1 PAMAM dendrimers -- 3.2 PPI dendrimers -- 3.3 PLL dendrimers -- 3.4 Phosphorus dendrimers -- 3.5 Carbosilane dendrimers -- 3.6 Hybrid nanocarriers -- 3.7 Other types of dendrimers -- 4. Applications of dendrimers -- 4.1 Gene delivery -- 4.2 Therapeutic applications -- 4.2.1 Anticancer drugs -- 4.2.2 Antimicrobial agents -- 4.2.3 Antiinflammatory disorders -- 4.3 Diagnostic applications -- 5. Challenges -- 6. Conclusion -- Acknowledgments and conflict of interest -- References -- 3 - Carbon nanomaterials in controlled and targeted drug delivery -- 1. Introduction -- 1.1 Types of carbon nanomaterials/carbon-based nanomaterials or allotropes -- 1.2 Graphite -- 1.3 Nanodiamonds -- 1.4 Graphene -- 2. Synthesis of carbon nanomaterials -- 2.1 Synthesis of carbon nanotubes by laser vaporization method -- 2.2 Synthesis of graphene -- 3. Top-down techniques -- 3.1 Liquid-phase exfoliation -- 3.2 Electrochemical exfoliation -- 3.3 Chemical reduction of graphene oxide -- 4. Bottom-up techniques -- 4.1 Epitaxial method -- 4.2 CVD synthesis -- 4.3 Chemical synthesis from aromatic molecules -- 4.4 Synthesis of carbon nanohorns -- 4.5 Laser ablation method.
,
4.6 Arc method -- 5. Carbon nanomaterials for drug delivery -- 6. GN for drug delivery -- 6.1 GN-based inorganic nanohybrids for drug delivery -- 7. CNTs for drug delivery -- 7.1 CNTs as carriers of anticancer molecules -- 7.2 CNT based conjugated systems for cancer targeting -- 8. Graphene for cancer targeting -- 9. Toxic effects of carbon-based nanomaterials -- 10. Applications -- 10.1 Graphene -- 10.2 Solid-phase extraction with graphene -- 10.3 Solid-phase microextraction with graphene -- 10.4 Graphene in other sample preparation techniques -- 10.5 Carbon nanotubes -- 10.5.1 Gas sensors -- 10.6 Voltammetry -- 10.7 Biosensors -- 10.8 Chromatographic properties -- 11. Conclusion -- Abbreviations -- Acknowledgments -- References -- 4 - Liposomal formulation: opportunities, challenges, and industrial applicability -- 1. Introduction -- 2. Types of liposomes -- 2.1 Conventional liposomes -- 2.2 Stealth liposomes -- 2.3 Immunoliposomes -- 2.4 Thermosensitive liposomes -- 2.5 pH sensitive liposomes -- 2.6 Light-induced liposomes -- 2.7 Enzyme-responsive liposomes -- 3. Methods of preparation -- 3.1 Thin-film hydration method -- 3.2 Reverse-phase evaporation method -- 3.3 Modified hydration method -- 3.4 Ethanol injection method -- 3.5 Freeze-thaw extrusion method -- 3.6 Microfluidic-based method -- 3.7 Supercritical fluid method -- 4. Targeted delivery -- 4.1 Passive targeting -- 4.2 Active targeting (surface tuning) -- 5. Challenges facing liposomal drug-delivery systems -- 5.1 Challenges in drug loading -- 5.1.1 Passive loading -- 5.1.2 Active loading -- 5.2 Challenges in scale-up and regulation -- 5.3 Market and biological challenges -- 6. Marketed and clinical liposomes -- 7. Conclusion and future perspectives -- References -- 5 - Polymers-drug-conjugates strategies in drug delivery -- 1. Introduction -- 2. Polymer -- 3. Types of polymer.
,
3.1 Biodegradable polymers -- 3.2 Natural biodegradable polymers -- 3.2.1 Polysaccharides -- 3.2.1.1 Chitosan -- 3.2.1.2 Glycol chitosan -- 3.2.1.3 Hyaluronic acid (HA) -- 3.2.2 Proteins and polypeptides -- 3.2.2.1 Collagen -- 3.2.2.2 Albumin -- 3.2.2.3 Gelatin -- 3.2.2.4 Elastin -- 3.3 Synthetic biodegradable polymers -- 3.3.1 Poly (glycolic acid) (PGA) -- 3.3.2 Poly (lactic acid-co-glycolic acid) (PLGA) -- 3.3.3 N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymers -- 3.3.4 Polycaprolactone (PCL) -- 3.3.5 Polyanhydride -- 3.3.6 Poly (trimethyl carbonates) polycarbonates -- 4. Different strategies to conjugate polymers -- 4.1 Polymer-drug molecule conjugate -- 4.2 Polymer-protein conjugate -- 4.3 Dendrimer -- 5. Conclusions -- References -- 6 - Metallic nanoparticles in drug delivery: concepts, challenges, and current advancement -- 1. Introduction -- 2. Metallic nanoparticles and their general method of synthesis -- 2.1 Top-down method -- 2.1.1 Mechanical methods -- 2.1.2 Vapor methods -- 2.2 Bottom-up approach -- 2.2.1 Solid-state method -- 2.2.2 Liquid state synthesis method [11,14] -- 3. Fundamentals of metallic nanoparticles -- 3.1 Gold nanoparticles -- 3.2 Silver nanoparticles -- 3.3 Iron nanoparticles -- 3.4 Palladium nanoparticles -- 3.5 Platinum nanoparticles -- 3.6 Copper nanoparticles -- 3.7 Zinc nanoparticles -- 3.8 Bimetallic nanoparticles -- 3.9 Characterization of metallic nanoparticles -- 4. Biomedical applications of metallic nanoparticles -- 4.1 Metallic nanoparticles for cancer therapy -- 4.2 Metallic nanoparticles for infectious disease treatment -- 4.3 Strategies for crossing the blood-brain barrier using metallic nanoparticles -- 4.4 Metallic nanoparticles for drug delivery to the skin -- 4.5 Metallic nanoparticles for drug delivery to eyes -- 4.6 Metallic nanoparticles for treatment of rheumatoid arthritis.
,
4.7 Metallic nanoparticles for diabetes management -- 5. Challenges and perspectives -- 6. Conclusion -- References -- 7 - Needle-free technology for biomedical applications -- 1. Introduction -- 2. Components of a needle-free injection devices -- 2.1 Nozzle -- 2.2 Drug reservoir -- 2.3 Pressure source -- 3. Fluid dynamics behind the formation of jet and penetration into the skin -- 3.1 Spring system -- 3.2 Laser powered -- 3.3 Energy propelled system -- 3.3.1 Lorentz force -- 3.3.2 Gas or air propelled -- 3.4 Shock waves -- 4. Type of material to be delivered -- 4.1 Liquid -- 4.2 Powder -- 4.3 Depot -- 4.4 Based on the mechanism of drug delivery -- 4.4.1 Nanopatches -- 4.4.2 Sandpaper facilitated drug delivery -- 4.4.3 Iontophoresis -- 4.4.4 Microneedle -- 4.5 Based on delivery site -- 4.5.1 Intradermal -- 4.5.2 Intramuscular -- 4.5.3 Subcutaneous -- 5. Risks and challenges -- 5.1 Infections -- 5.2 Pain management -- 6. Emerging parameters -- 6.1 Driving pressure -- 6.2 Contact pressure -- 6.3 Volume per spurt -- 6.4 Orifice diameter -- 6.5 Spacer -- 6.6 Vaccine and immunization -- 6.7 Insulin -- 7. Growth hormones -- 8. Gene therapy -- 9. Local anesthesia -- 10. Intralesional 5-ALA -- 11. Dermal applications -- 11.1 Skin rejuvenation -- 11.2 Direct palmar BoNT-ONA -- 11.3 Intralesional corticosteroids -- 11.4 Intralesional bleomycin -- 11.4.1 Miscellaneous applications -- 12. Conclusion -- References -- 8 - Nanoparticles: opportunities, biopharmaceuticals aspects, and applications -- 1. Introduction -- 2. Biopharmaceutical aspects -- 2.1 In vitro changes in a drug with a nanosystem -- 2.1.1 Particle size distribution -- 2.1.2 Solubility -- 2.1.3 Drug release -- 2.1.4 Stability -- 2.1.5 Particle shape -- 2.2 In vivo changes in a drug with a nanosystem -- 2.2.1 Absorption -- 2.2.2 Biodistribution -- 2.2.3 Clearance -- 3. Nanoparticle opportunities.
,
4. Nanoparticle applications.
Weitere Ausg.:
Print version: Mehra, Neelesh Kumar Multifunctional Nanocarriers San Diego : Elsevier,c2022 ISBN 9780323850414
Sprache:
Englisch
Bookmarklink