Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
  • 1
    UID:
    almahu_9949985019302882
    Umfang: 1 online resource (392 pages)
    ISBN: 9780323860000 , 0323860001
    Anmerkung: Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- About the Editors -- Preface -- CHAPTER 1 - Role of microorganism as new generation plant bio-stimulants: An assessment -- 1.1 Background -- 1.2 Introduction of plant bio-stimulants -- 1.3 Basic mechanism of bio-stimulants -- 1.4 Sources of plant bio-stimulants -- 1.5 Microbes as plant bio-stimulant -- 1.5.1 Fungi as bio-stimulants -- 1.5.2 Bacteria as bio-stimulants -- 1.5.3 Microbial consortia as bio-stimulants -- 1.6 Role of microbes in nutrient uptake/stimulation -- 1.6.1 Nitrogen fixation -- 1.6.2 Phosphate solubilisation -- 1.6.3 Hormones and other secondary metabolite -- 1.7 Conclusions -- References -- CHAPTER 2 - Exploiting biostimulant properties of Trichoderma for sustainable plant production -- 2.1 Introduction -- 2.2 Trichoderma metabolism: from decomposers to plant growth promoters -- 2.3 Trichoderma -plant chemical dialogue -- 2.3.1 Trichoderma released compounds in plant growth promotion -- 2.4 Trichoderma -induced resistance to plant pathogens -- 2.4.1 Salicylic acid-mediated interactions -- 2.4.2 Jasmonic acid and other oxylipins -- 2.4.3 Biocontrol of aphids, nematodes and other pests -- 2.5 Trichoderma and plant nutrition -- 2.5.1 Major nutritional needs of crops -- 2.5.2 Phosphate nutrition -- 2.5.3 Nitrate use efficiency -- 2.5.4 Iron acquisition -- 2.5.5 Better usage of organic nutriments -- 2.6 Soil acidification in Trichoderma -plant interactions -- 2.7 Salt stress tolerance mediated by Trichoderma -- 2.7.1 Plant adaptive responses to salinity -- 2.7.2 Trichoderma improves plant adaptation to salt stress -- 2.8 Conclusions and future prospects -- References -- CHAPTER 3 - Bacillus rhizobacteria: A versatile biostimulant for sustainable agriculture -- 3.1 Introduction. , 3.2 Diversity of Bacillus species -- 3.3 Direct mechanism of plant growth promotion -- 3.3.1 Phosphate solubilization -- 3.3.2 Nitrogen fixation -- 3.3.3 Potassium solubilization -- 3.3.4 Phytohormones production -- 3.3.5 Siderophores production -- 3.4 Indirect mechanism -- 3.4.1 Antibiotic production -- 3.4.2 Lytic enzyme production -- 3.4.3 Induction of systemic resistance -- 3.4.3.1 Phenylalanine ammonia lyase (PAL) -- 3.4.3.2 Phenols -- 3.4.3.3 β−1, 3-glucanases (PR2) -- 3.4.3.4 Peroxidase (PO) -- 3.4.3.5 Polyphenol oxidase (PPO) -- 3.4.3.6 Scavengers of reactive oxygen species (ROS) -- 3.5 Future prospects -- References -- CHAPTER 4 - Arbuscular mycorrhizae, a treasured symbiont to agriculture -- 4.1 Introduction to mycorrhiza -- 4.2 VAM in agriculture -- 4.2.1 AMF and PGPR -- 4.2.2 Soil fertility and nutrient uptake -- 4.2.3 Water uptake -- 4.2.4 Soil erosion prevention -- 4.2.5 Effect on plant physiology and biochemical attributes -- 4.2.6 AMF as biocontrol agent -- 4.2.7 Weed control -- 4.3 Application of AMF in bioremediation -- 4.4 Renaturation and afforestation -- 4.5 Mass production of VAM: the past, present and future -- 4.5.1 Substrate based production -- 4.5.2 Substrate free production -- 4.5.3 In-vitro production of AM fungi -- 4.5.4 Formulation of AMF -- 4.5.5 Factors affecting AMF bioinoculants -- 4.6 Conclusion -- References -- CHAPTER 5 - Micro and macroalgae: A potential biostimulant for abiotic stress management and crop production -- 5.1 Introduction -- 5.2 Review of literature and recent developments -- 5.2.1 Global production of algae -- 5.2.2 Harvesting of algal biomass -- 5.2.3 Extraction of bioactive compounds from macroalgae -- 5.2.4 Extraction of bioactive components from microalgae -- 5.2.5 Phytohormone constituents of algae. , 5.2.6 Mineral and organic constituents of algae -- 5.2.7 Formulation of algal biostimulants -- 5.2.8 Applications of algal biostimulants -- 5.2.9 Challenges in commercialization of algal biostimulants and tackling strategies -- 5.3 Conclusion and future prospects -- References -- CHAPTER 6 - Fluorescent Pseudomonads: A multifaceted biocontrol agent for sustainable agriculture -- 6.1 Introduction -- 6.2 Species diversity of Fluorescent Pseudomanads -- 6.3 Mechanisms of Fluorescent Pseudomanads -- 6.3.1 Plant growth promotion -- 6.3.2 Siderophores -- 6.3.3 Hydrogen cyanide production -- 6.3.4 Antibiotic production -- 6.3.4.1 2,4-Diacetyl phloro glucinol (DAPG) -- 6.3.4.2 Phenazines -- 6.3.4.3 Pyrrolnitrin and pyoluteorin -- 6.3.5 Lytic enzyme production -- 6.3.6 Induced systemic resistance -- 6.4 Future prospects -- References -- CHAPTER 7 - Role of Piriformospora indica in inducing soil microbial communities and drought stress tolerance in plants -- 7.1 Introduction -- 7.2 Soil microbial communities: benign hidden players in plant growth -- 7.3 P. indica : an overview -- 7.3.1 P. indica mediated microbe-microbe interaction shape rhizospheric microbiome -- 7.3.2 P. indica as a promoter of synergistic tripartite symbiosis -- 7.4 Basic mechanisms in plants to counter drought stress -- 7.5 Morphological and physiological innate responses in plants against drought stress -- 7.5.1 Plants morphological responses in drought stress condition -- 7.5.2 Plants physiological response in drought -- 7.6 Multidimensional contribution of P. indica in providing tolerance against drought stress -- 7.6.1 Bioprotectant properties of P. indica to confer drought stress tolerance in maize: a case study -- 7.7 P. indica mediated adaptative responses generated in rice plants to cope up drought stress. , 7.8 Scope of P. indica for the promotion of sustainable agriculture in xerophytic habitats -- 7.9 Conclusion -- References -- CHAPTER 8 - Microbes-based bio-stimulants towards sustainable oilseeds production: Nutrient recycling and genetics involved -- 8.1 Introduction -- 8.2 Soil microbes and plant interactions -- 8.2.1 Plant and microorganisms -- 8.2.2 Soil and microorganism -- 8.2.3 Soil and plant -- 8.2.4 The three way interaction -- 8.3 Geochemical changes in plant rhizosphere and release of mineral nutrients -- 8.3.1 Weathering -- 8.3.2 Carbonates and phosphates precipitation -- 8.3.3 Nutrient cycling -- 8.4 VAM fungi for efficient nutrient acquisition and mobilization -- 8.4.1 Uniqueness of VAM -- 8.4.2 Interaction of biotic and abiotic factors with VAM -- 8.4.2.1 Abiotic factors -- 8.4.2.2 Biotic factors -- 8.4.3 Mass production of VAM -- 8.4.4 Tips for the efficient use of VAM -- 8.5 Genetics involved in nutrient cycling -- 8.5.1 Nitrogen cycle -- 8.5.2 Carbon cycle -- 8.5.3 Phosphorus transformation -- 8.5.4 Potassium solubilization -- 8.5.5 Sulphur transformation -- 8.6 Conclusions -- References -- CHAPTER 9 - Role of soil microbes in micronutrient solubilization -- 9.1 Introduction -- 9.2 Importance of micronutrients in plant nutrition -- 9.3 Sources and pools of micronutrients in soil and their significance in plant uptake -- 9.4 Factors affecting the availability of micronutrients -- 9.4.1 Cationic micronutrients -- 9.4.2 Anionic micronutrients -- 9.5 Influence of rhizosphere in micronutrient availability -- 9.6 Soil pH and pE as an indicator of micronutrient availability -- 9.7 Micronutrients -- 9.7.1 ZINC (Zn) -- 9.7.2 Manganese -- 9.7.3 Iron (Fe) -- 9.7.4 Copper (Cu) -- 9.7.5 Boron (B) -- 9.7.6 Molybdenum (Mo) -- 9.7.7 Chlorine (Cl) -- 9.8 Conclusion and future perspectives. , References -- CHAPTER 10 - Sustainable induction of systemic resistance in response to potential biological control agents in crops -- 10.1 Introduction -- 10.2 Novel scenario of biological control -- 10.3 Suppressive soils pathogens -- 10.4 Potential in PGPR -- 10.5 Induction of systemic resistance -- 10.5.1 Role of PGPR -- 10.5.2 Abundance of antibiotics -- 10.5.3 Siderophore production -- 10.5.4 Poduction of HCN -- 10.5.5 Systemic acquired resistance in plants -- 10.5.6 Mechanisms of induced systemic resistance -- 10.5.7 Conception molecular in PGPR -- 10.5.8 Biocontrol products of PGPR -- 10.6 Fungal BCAs -- 10.6.1 Relevance of Trichoderma -- 10.7 Potental of non-pathogenic strains -- 10.7.1 Fusarium strains -- 10.7.2 Pythium strains -- 10.7.3 Potential of penicillum strain -- 10.7.4 Potential of Rhizoctonia strain -- 10.7.5 Potential of Colletotrichum starin -- 10.8 Conclusion and future prospects -- References -- CHAPTER 11 - Psychrophilic microbes: Biodiversity, beneficial role and improvement of cold stress in crop plants -- 11.1 Introduction -- 11.2 Historical background -- 11.3 Biodiversity of psychrophilic microbes -- 11.4 Mechanisms of adaptation of psychrophilic microbes -- 11.4.1 Structural adaptations -- 11.5 Psychrophilic microbes used in crop improvement -- 11.6 The beneficial role of psychrophilic microbes in crop performance -- 11.6.1 Biological nitrogen fixation -- 11.6.2 Phytohormones production -- 11.6.3 Solubilization of beneficial nutrients -- 11.6.4 Siderophore production -- 11.6.5 Antifungal activity, antibiotics and enzymes -- 11.7 Conclusion and future prospects -- References -- CHAPTER 12 - Role of plant-associated bacteria as bio-stimulants in alleviation of chromium toxicity in plants -- 12.1 Cr toxicity to the environment -- 12.1.1 Effects on human -- 12.1.2 Effect on plants. , 12.1.3 Effect on microorganisms.
    Weitere Ausg.: ISBN 9780323851633
    Weitere Ausg.: ISBN 0323851630
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780323856133?
Meinten Sie 9780323851534?
Meinten Sie 9780323851619?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz